Если в конечном итоге нашей Вселенной суждено погибнуть, способны ли мы переместиться в другую? Этот вопрос, занимающий в последние десятилетия умы космологов всего мира, в центре книги «Параллельные миры» известного физика и блестящего популяризатора науки Митио Каку. Другая вселенная, пишет он, может находиться в миллиметре от нас, но она недосягаема, поскольку существует в гиперпространстве, за пределами наших четырех измерений. Как покорить это гиперпространство, мыслимо ли это? Такую возможность Каку видит в новой теории Мультивселенной – мира, образованного множеством вселенных, в числе которых наша – одна из великого множества. Но чтобы понять будущее космологии, необходимо разобраться в ее прошлых перипетиях и важнейших современных открытиях. И в это захватывающее путешествие читатель приглашается прямо сейчас.
Приведённый ознакомительный фрагмент книги Параллельные миры: Об устройстве мироздания, высших измерениях и будущем космоса предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
Часть I
Вселенная
Глава 1
Детские фотографии Вселенной
Поэт лишь желает подняться головой к небесам. Логик же пытается затолкать небеса к себе в голову. Его-то голова и раскалывается.
В детстве я испытывал внутренний дискомфорт, связанный с тем, что я и мои родители исповедовали разные религии. Родители были воспитаны в буддийских традициях. Я же каждую неделю ходил в воскресную школу, где с увлечением слушал библейские сказания о китах, ковчегах, соляных столпах, ребрах и яблоках. Я был очарован этими притчами Ветхого Завета, в воскресной школе мне нравились именно они. Притчи о великих потопах, пылающих кустах и расступающихся пучинах увлекали меня гораздо сильнее буддийских песнопений и медитаций. По сути, эти древние сказания о героизме и вселенской трагедии ярко иллюстрировали глубокие моральные принципы; уроки этики, вынесенные из них, остались со мной на всю жизнь.
Тогда мы как раз изучали Книгу Бытия. Читать о Боге, громогласно вещающем с небес «Да будет свет!», было намного интереснее, чем безмолвно медитировать, погрузившись в размышления о нирване. Из наивного любопытства я спросил нашу учительницу: «А была ли у Бога мать?» Обычно она отвечала на вопросы без малейшей запинки, у нее всегда имелась под рукой притча с глубокой моралью. Однако на этот раз я захватил ее врасплох. «Нет, — ответила она с ноткой сомнения. — Наверное, у Бога не было матери». «Но тогда откуда же взялся сам Бог?» — спросил я. Она смущенно пробормотала, что проконсультируется по этому вопросу со священником.
Мне и невдомек было, что я случайно коснулся одного из труднейших вопросов теологии. Я был озадачен, потому что в буддизме Бога-Творца просто не существует, есть лишь вечная Вселенная без начала и конца. Какое-то время спустя, начав изучать великие мифологии мира, я узнал о существовании двух космологических концепций. Первая основывалась на представлении о том, что Бог создал Вселенную за одно мгновение, вторая же утверждала, что Вселенная была и пребудет вечно.
«Не может же и то и другое быть верным», — думал я.
Позднее я обнаружил, что сходные мотивы пронизывают предания и в других культурах. Например, в китайской мифологии вначале было космическое яйцо. Бог-ребенок Пань-гу чуть ли не целую вечность находился внутри яйца, которое покачивалось на волнах безграничного моря Хаоса. Когда же наконец Пань-гу вылупился из яйца, он стал стремительно расти, прибавляя в росте более трех метров в день, так что верхняя половинка яичной скорлупы стала небесным сводом, нижняя же — земной твердью. Через 18 000 лет Пань-гу умер, дав начало нашему миру: кровь его стала реками, глаза — солнцем и луной, а голос — громом.
В мифе о Пань-гу повторяется идея, встречающаяся во многих других религиях и древних мифологиях: о том, что Вселенная начала свое существование как creatio ex nihilo (сотворенная из ничего). В греческой мифологии Вселенная возникла из Хаоса (в сущности, само слово «хаос» происходит от греческого слова, означающего «бездна»). Эта пустота, лишенная каких-либо четких черт, часто представляется как некий океан, например в вавилонской и японской мифологиях. Тот же мотив прослеживается в древнеегипетской мифологии, где бог солнца Ра появляется из яйца, покачивающегося на волнах океана. В полинезийских мифах вместо космического яйца фигурирует скорлупа кокоса. В верованиях майя эта история подавалась в варианте, где Вселенная однажды возникла, но через каждые 5000 лет она умирает, чтобы возрождаться вновь и вновь, повторяя бесконечный цикл рождений и разрушений.
Эти мифы creatio ex nihilo представляют собой ярко выраженный контраст с космологией буддизма и некоторых форм индуизма. В мифологиях этих религий Вселенная вечна, она не имеет ни начала, ни конца. Есть различные уровни существования, высшим из которых является нирвана — уровень вечный, достичь которого можно лишь при помощи медитации. В индуистской «Махапуране» написано: «Если Бог создал мир, то где же Он был до создания?.. Знайте, что мир не был создан, равно как не было создано время, они не имеют ни начала, ни конца».
Эти мифологии противоречат друг другу, не находя компромисса. Они взаимоисключающи: либо у Вселенной было начало, либо его не было. Очевидно, что здесь отсутствует возможная точка соприкосновения.
Однако сегодня, кажется, зарождается некое разрешение этого спора, приходящее из совершенно нового мира — мира науки. Его предлагают последние поколения мощных научных приборов и аппаратов, способных летать в открытом космосе. Объясняя происхождение мира, древняя мифология основывалась лишь на мудрости рассказчика. Сегодня ученые, активно используя космические спутники, лазеры, детекторы гравитационных волн, интерферометры, высокоскоростные суперкомпьютеры, а также интернет, совершили мощный прорыв в науке. Тем самым они революционизировали наше понимание Вселенной и представили нам самую убедительную из когда-либо существовавших точку зрения на ее возникновение.
Таким образом, на основе полученных новых данных постепенно происходит великий синтез двух противостоящих мифологий. Возможно, предполагают ученые, мир рождается многократно в вечном океане нирваны. В свете нынешних представлений нашу Вселенную можно сравнить с пузырьком воздуха, свободно плавающим во вселенском «океане», где постоянно образуются новые пузырьки. Согласно этой теории, вселенные образуются непрерывно, словно пузырьки при кипении воды, и разлетаются по бесконечному пространству — гиперкосмической нирване, обладающей одиннадцатью измерениями. Все больше физиков полагают, что наша Вселенная действительно появилась в результате огненного катаклизма — Большого взрыва, сосуществуя в вечном океане с другими вселенными. Если это так, то Большие взрывы происходят даже сейчас, когда вы читаете это предложение.
Физики и астрономы во всем мире строят гипотезы о том, как могут выглядеть эти параллельные миры, какие законы в них действуют, откуда они произошли и как в конце концов погибнут. Возможно, параллельные миры пустынны и не содержат неких жизненно важных компонентов. А возможно, они практически не отличаются от нашей Вселенной и отделены от нее всего одним существенным событием (произошедшим или непроизошедшим), которое и стало причиной их различия. По предположениям некоторых физиков, если когда-нибудь жизнь в существующей ныне Вселенной станет невозможной из-за ее старения и остывания, может так случиться, что нам придется ее покинуть и искать прибежища в другой вселенной.
Основанием для этих новых теорий служит огромный приток данных с космических спутников, по мере того как они фотографируют останки самого творения. Примечательно, что ученые сейчас сосредоточиваются на том, что произошло всего лишь спустя 380 000 лет после Большого взрыва, когда «зарево» создания впервые полностью осветило Вселенную. Возможно, наиболее подробная картина творения была получена с помощью нового аппарата, который называется WMAP — зонд Уилкинсона для измерения анизотропии микроволнового излучения[1].
Зонд Уилкинсона для измерения анизотропии микроволнового излучения
«Невероятно! Новая веха!» — восклицали в феврале 2003 года обычно сдержанные астрофизики, описывая драгоценные данные, полученные с последнего спутника. Зонд Уилкинсона для измерения анизотропии микроволнового излучения (WMAP), названный в честь крупнейшего астрофизика Дэвида Уилкинсона и запущенный в 2001 году, представил ученым беспрецедентно точную и детальную картину ранней Вселенной, возраст которой не превышал 380 000 лет. Колоссальная энергия, которая вырвалась из первоначального огненного облака, давшего начало звездам и галактикам, продолжает циркулировать в нашей Вселенной уже миллиарды лет. И вот ее засняли на пленку в мельчайших деталях с помощью зонда Уилкинсона. Эта съемка принесла нам невиданную доселе поразительно четкую фотографию неба, на которой можно увидеть микроволновое излучение — результат того самого Большого взрыва. Журнал Time назвал это излучение «эхом творения». И теперь астрономы всегда будут видеть небо в новом свете.
Джон Бакал из принстонского Института перспективных исследований назвал открытия спутника WMAP своеобразным «ритуалом, сопровождающим переход космологии от предположений к точной науке»{1}. Впервые данные о раннем периоде истории Вселенной позволили космологам точно ответить на древнейший из когда-либо заданных вопросов — на вопрос, который озадачивал и интриговал человечество с тех самых пор, как мы впервые подняли глаза и увидели неземную красоту ночного неба. Каков возраст Вселенной? Каковы ее параметры? Какая судьба ее ждет?
(В 1992 году предыдущий спутник — СОВЕ (космический аппарат для изучения реликтового излучения) — предоставил в наше распоряжение первые размытые снимки реликтового излучения, пронизывающего небеса. Полученные беспрецедентные результаты вызвали и определенное разочарование, поскольку представленная картина ранней Вселенной была несфокусированной. Это не помешало прессе возбужденно окрестить фотографию излучения «ликом Божиим». Но правильнее было бы сказать, что размытые снимки со спутника СОВЕ представляли «младенческую фотографию» Вселенной. Если посчитать сегодняшнюю Вселенную восьмидесятилетним старцем, то снимки, сделанные спутником СОВЕ (а позднее — зондом Уилкинсона для измерения анизотропии микроволнового излучения), фиксируют ее «новорожденной», когда ей и дня еще не исполнилось.)
Почему же зонд Уилкинсона смог предоставить нам беспрецедентные снимки зарождающейся Вселенной? Да потому, что ночное небо подобно машине времени. Поскольку свет распространяется с конечной скоростью, мы видим звезды в небе такими, какими они были когда-то, а не такими, каковы они сейчас. Расстояние от Луны до Земли свет проходит не мгновенно — ему для этого требуется секунда с небольшим; поэтому, когда мы смотрим на Луну, в действительности мы видим ее такой, какой она была секунду назад. На расстояние от Солнца до Земли световой луч затрачивает около восьми минут. Многие из известных нам звезд настолько далеки, что их световому лучу требуется от десяти до ста лет, чтобы достичь пределов нашей видимости. (Иными словами, они находятся на расстоянии от десяти до ста световых лет от Земли. Световой год чуть меньше 10 трлн км — именно такое расстояние свет проходит за год.) Световые лучи из отдаленных галактик достигают Земли за сотни миллионов, а то и миллиарды световых лет. Таким образом, они являются источниками «ископаемого» света, при этом некоторые из них испустили его еще до появления динозавров. Среди самых отдаленных объектов, которые мы можем наблюдать с помощью телескопов, есть так называемые квазары — гигантские «космические маяки», генерирующие невероятные количества энергии на окраинах видимой Вселенной. Они находятся на расстоянии 12–13 млрд световых лет от Земли. И вот сегодня зонд Уилкинсона зафиксировал еще более древнее излучение — «зарево» первоначального взрыва, в результате которого возникла наша Вселенная.
Иногда космологи, описывая Вселенную, используют для иллюстрации Empire State Building, возносящийся над Манхэттеном более чем на сто этажей. С крыши небоскреба тротуары можно различить с большим трудом. Условимся, что основание небоскреба представляет собой зону Большого взрыва. Тогда, если считать, что мы смотрим с крыши, отдаленные галактики будут находиться на десятом этаже. Квазары, которые еще можно рассмотреть с Земли в телескопы, будут на уровне седьмого этажа. А реликтовое космическое излучение, измеренное зондом Уилкинсона, поднято над уровнем тротуара на высоту около полутора сантиметров. Таким образом, зонд Уилкинсона предоставил нам возможность вычислить возраст Вселенной поразительно точно — с погрешностью всего лишь в 1 %: 13,7 млрд лет.
Запуск зонда Уилкинсона стал результатом более чем десятилетней напряженной работы астрофизиков. Концепция спутника с зондом Уилкинсона на борту была впервые предложена NASA в 1995 году и одобрена через два года. 30 июня 2001 года сотрудники NASA разместили зонд Уилкинсона на борту ракеты «Дельта II» и вывели ракету на орбиту между Солнцем и Землей. Тщательно рассчитанным пунктом назначения стала вторая точка Лагранжа (или Л2 — одна из точек гравитационного равновесия между Землей, Луной и Солнцем), которая обеспечивает наилучший обзор. В поле обзора спутника не попадают ни Солнце, ни Земля, ни Луна, благодаря чему зонд Уилкинсона всегда транслирует четкую картину Вселенной. Спутник полностью сканирует небо с периодичностью шесть месяцев.
Спутник оснащен самой современной аппаратурой. С помощью встроенных мощных сенсоров он может уловить слабое микроволновое излучение, оставшееся после Большого взрыва. Это излучение омывает всю Вселенную, но наша атмосфера его в значительной мере поглощает. Спутник сделан из алюминиевого сплава. Его размеры — 3,8 × 5 м², вес — 840 кг. Спутник снабжен двумя телескопами, которые фокусируют микроволновое излучение окружающего неба, а затем полученные данные передаются на Землю. Для работы спутнику необходима мощность всего лишь 419 Вт (что равняется мощности четырех-пяти стандартных электрических лампочек). Зонд Уилкинсона располагается на расстоянии 1,5 млн км от Земли, оставляя далеко за собой все атмосферные колебания, которые скрывают слабое микроволновое излучение. Именно благодаря такому расположению спутник может непрерывно сканировать небо.
Свое первое сканирование неба спутник завершил в апреле 2002 года. Через полгода было завершено и второе полное сканирование. На сегодняшний день зонд Уилкинсона предоставил нам наиболее полную и точную из всех когда-либо существовавших карту микроволнового излучения[2]. Существование реликтового микроволнового излучения, обнаруженного и зафиксированного зондом Уилкинсона, впервые предсказал Георгий Гамов со своими сотрудниками в 1948 году; они также обращали внимание на то, что это излучение должно иметь собственную температуру. Зонд Уилкинсона измерил эту температуру, зафиксировав ее на уровне чуть выше абсолютного нуля, между 2,7249 и 2,7251 K.
Невооруженному глазу карта неба, отсканированная зондом Уилкинсона, не покажется интересной: мы увидим лишь беспорядочное скопление точек. Однако некоторые астрономы чуть не рыдали над этим скоплением, поскольку эти точки представляют из себя флуктуации, или неравномерности, первоначального огненного катаклизма — Большого взрыва — сразу после возникновения Вселенной. Эти крошечные флуктуации подобны «семенам», которые буйно разрослись, когда распустился «бутон» Вселенной. Сегодня из этих крошечных семян «расцвели пышным цветом» галактические скопления и галактики, сверкающие на небесах. Иными словами, наша галактика Млечный Путь и все скопления галактик вокруг были когда-то этими крошечными флуктуациями. Измерив распределение этих флуктуаций, мы поймем происхождение галактических скоплений — этих точек, вытканных на гобелене ночного неба.
Сегодня ученые в выдвижении новых теорий не поспевают за потоком поступающих астрономических данных. В общем, я бы не согласился с тем, что наступает золотой век космологии. (Как ни впечатляет зонд Уилкинсона, достижения его покажутся не такими уж значительными по сравнению со спутником Planck, который европейцы собираются запустить в 2007 году. Planck, как надеются астрономы, даст более точные картины микроволнового реликтового излучения[3].) Однако мы вполне можем сказать, что космология наконец вступает в период зрелости. После многолетнего прозябания в болоте предположений и фантастических гипотез она выходит из тени точных наук. Исторически так сложилось, что космологи пользовались несколько подмоченной репутацией. Ошеломляющая страстность, с которой они излагали свои грандиозные теории о возникновении Вселенной, была сравнима со столь же ошеломляющей бедностью их данных. Недаром нобелевский лауреат Лев Ландау саркастически отмечал, что «космологи часто ужасаются, но никогда не сомневаются». Среди ученых-естественников популярна старая поговорка: «Есть предположения, дальше идут предположения о предположениях, а еще дальше — космология».
В бытность мою студентом-физиком в Гарварде в конце 1960-х годов я некоторое время лелеял мысль заняться космологией — меня с детства волновал вопрос о происхождении Вселенной. Однако знакомство с этой наукой показало ее постыдную примитивность. Это была вовсе не та экспериментальная наука, где можно проверять гипотезы при помощи точных приборов, а скорее груда неопределенных и в высшей степени недоказательных теорий. Космологи вели жаркие дискуссии о том, возникла Вселенная в результате космического взрыва или же она всегда пребывала в устойчивом состоянии. Но теорий у них всегда было намного больше, чем данных. И так всегда: чем меньше данных, тем жарче споры.
На протяжении всей истории космологии эта нехватка достоверных данных приводила к жестоким войнам между астрономами, затягивавшимся иногда на десятилетия. (В частности, на некоем научном форуме непосредственно перед тем, как Аллан Сэндидж из Обсерватории Маунт-Вилсон должен был выступить с докладом о возрасте Вселенной, предыдущий оратор объявил с сарказмом: «Все, что вы сейчас услышите, — вранье»{2}. А сам Сэндидж, прослышав о том, что группа ученых-соперников добилась определенного успеха, прорычал: «Это все полная чушь. Война — так война!»{3})
Возраст Вселенной
Особенно интересовал астрономов вопрос, каков же истинный возраст Вселенной. На протяжении столетий ученые, философы и теологи пытались определить его хотя бы приблизительно, пользуясь единственным доступным им методом — генеалогией человечества со времен Адама и Евы. В прошлом веке геологи использовали радиоактивное излучение, которое наблюдается в скалах, для получения наиболее точных данных о возрасте Земли. В свою очередь, зонд Уилкинсона для измерения анизотропии микроволнового излучения изучил эхо самого Большого взрыва, дав нам наиболее надежные сведения о возрасте Вселенной. Данные зонда Уилкинсона показывают, что Вселенная возникла в результате Большого взрыва, который произошел 13,7 млрд лет тому назад.
(В течение многих лет одним из наиболее скользких моментов, неотступно преследующих космологию, было то, что вычисленный возраст Вселенной часто оказывался меньше возраста отдельных планет и звезд. Причиной тому были ошибки исходных данных. Предыдущие расчеты возраста Вселенной давали ей от 1 до 2 млрд лет, что противоречило принятому возрасту Земли (4–5 млрд лет) и старейших звезд (12 млрд лет). Теперь эти противоречия устранены.)
Данные зонда Уилкинсона стали причиной крутого поворота в споре о том, из чего состоит Вселенная: этим вопросом задавались еще греки более двух тысячелетий тому назад. На протяжении всего XX века считалось, что ответ известен. Проведя тысячи скрупулезных экспериментов, ученые пришли к выводу, что Вселенная в основном состоит примерно из сотни различных элементов, выстроенных в аккуратную периодическую таблицу, начинающуюся с водорода. Эта таблица — основа современной химии, и, фактически, ее изучают в каждой средней школе. Зонд Уилкинсона разрушил эти представления.
Подтверждая ранее проведенные эксперименты, зонд Уилкинсона показал, что вся видимая материя вокруг нас (включая горы, планеты, звезды и галактики) составляет ничтожную часть (4 %[4]) всей материи и энергии во Вселенной. (Бо́льшую часть этих 4 % составляют водород и гелий, и только где-то около 0,03 % — тяжелые элементы.) Но подавляющая часть Вселенной состоит из загадочного невидимого вещества абсолютно неизвестного происхождения. Известные элементы, из которых состоит наш мир, составляют во Вселенной лишь 0,03 %. В каком-то смысле наука оказалась отброшена на века назад, во времена, когда еще не было атомической гипотезы, поскольку физики споткнулись на факте, что во Вселенной преобладают принципиально новые, неизвестные науке формы материи и энергии.
Согласно данным зонда Уилкинсона, Вселенная на 23 %[5] состоит из неизвестной, неопределенной субстанции — так называемой темной материи. Она обладает весом и окружает галактики гигантским ореолом, который нам невидим. Темная материя настолько вездесуща и ее так много, что в нашей галактике Млечный Путь она весит в 10 раз больше, чем все звезды вместе взятые. Несмотря на невидимость этой неизвестной материи, ученые, используя метод непрямого наблюдения, смогли ее «увидеть»: темная материя искривляет звездный свет подобно стеклу, и поэтому ее можно обнаружить по степени создаваемого оптического искажения.
По поводу удивительных результатов, полученных со спутника WMAP, астроном из Принстона Джон Бакал заявил: «Мы живем в невероятной, просто сумасшедшей Вселенной, но теперь нам известны ее определяющие характеристики»{4}.
Однако, наверное, самым большим сюрпризом из данных, полученных спутником WMAP и потрясших все научное сообщество, стал факт, что 73 %[6] Вселенной, ее большая часть, состоит из абсолютно неизвестной формы энергии, называемой темной, или невидимой, энергией, таящейся в вакуумном пространстве. Введенное самим Эйнштейном в 1917 году, а затем отвергнутое (великий физик назвал его своей величайшей ошибкой) понятие «темная энергия», она же энергия пустоты, пустого космоса, теперь снова выходит на авансцену как движущая сила Вселенной. Ученые считают, что темная энергия создает антигравитационное поле, которое тянет галактики в разные стороны, и конечная судьба Вселенной будет определяться именно темной энергией.
На данный момент никто и представить не может, откуда взялась эта энергия пустоты. «Откровенно говоря, мы этого просто не понимаем. Нам известно ее воздействие, но у нас нет ключа к разгадке… ни у кого нет ни единого ключа»{5}, — признает Крейг Хоган, астроном из Университета им. Дж. Вашингтона в Сиэтле.
Если взять новейшую теорию субатомных частиц и попытаться вычислить значение этой темной энергии, мы получим число, которое отклоняется от нормы на 10120 (это единица, за которой следуют 120 нулей). Такое расхождение между теорией и экспериментом — величайший за всю историю пробел в науке. Это одно из наших непреодолимых (по крайней мере, в настоящее время) препятствий — даже с помощью лучшей из наших теорий мы не можем вычислить значение величайшего источника энергии во всей Вселенной. Безусловно, целая куча Нобелевских премий ожидает предприимчивых ученых, которые смогут раскрыть тайны темной энергии и темной материи.
Расширение
Астрономы до сих пор пытаются справиться с лавиной данных, принесенных спутником WMAP. По мере того как эта лавина сметает устаревшие концепции Вселенной, в космологии вырисовывается новая картинка. «Мы заложили фундамент единой, непротиворечивой теории космоса»{6}, — заявляет Чарльз Беннетт, руководитель международной команды, принимавшей участие в обработке и анализе данных со спутника WMAP. В настоящий момент ведущей является инфляционная теория Вселенной, то есть усовершенствованная теория Большого взрыва, впервые предложенная Аланом Гутом из Массачусетского технологического института[7]. По инфляционной теории, в первую триллионную долю секунды загадочная антигравитационная сила вынудила Вселенную расширяться намного быстрее, чем считалось раньше. Инфляционный период был невообразимо взрывным, при этом Вселенная расширялась со скоростью, намного превышающей скорость света. (Это не противоречит заявлению Эйнштейна, что «ничто» может перемещаться быстрее света[8], поскольку расширяется пустое пространство. Что же касается материальных объектов, то они не могут перескочить световой барьер.) Итак, за ничтожную долю секунды Вселенная невообразимо расширилась — в 1050 раз.
Чтобы вообразить интенсивность расширения инфляционного периода (или инфляционной эпохи), представьте себе воздушный шарик с нарисованными на его поверхности галактиками, который быстро надувают. Видимая Вселенная, заполненная звездами и галактиками, лежит на поверхности воздушного шарика, а не внутри него. Теперь поставьте на шарике микроскопическую точку. Эта точка и есть видимая Вселенная, то есть все, что мы можем наблюдать при помощи наших телескопов. (Для сравнения: если бы видимая Вселенная была размером с субатомную частицу, то вся Вселенная была бы намного больше той реальной видимой Вселенной, которую мы наблюдаем.) Иными словами, инфляционное расширение было настолько интенсивным, что теперь существуют целые области Вселенной вне нашей видимой, которые так навсегда и останутся для нас за пределами видимости.
Расширение Вселенной было столь интенсивным, что при взгляде на описанный шарик с близкого расстояния он кажется плоским. Этот факт был экспериментально проверен спутником WMAP. Как и Земля кажется нам плоской, потому что мы очень малы по сравнению с ее радиусом, так и Вселенная кажется нам плоской лишь потому, что она изогнута в гораздо большем масштабе.
Допустив раннее инфляционное расширение, можно без особых усилий объяснить многие загадки Вселенной, как, например, то, что она кажется плоской и однородной. Характеризуя инфляционную теорию, физик Джоэл Примак сказал: «Из таких прекрасных теорий еще ни одна не оказывалась ошибочной»{7}.
Мультивселенная
Несмотря на то что инфляционная теория согласуется с данными зонда Уилкинсона, она все же не отвечает на вопрос: что стало причиной расширения? Что побудило к действию антигравитационную силу, которая «раздула» Вселенную? Существует более 50 теорий о том, что стало причиной начала и окончания расширения, в результате чего и возникла наша Вселенная. Но единого мнения не существует. Большинство физиков соглашается с основной идеей о стремительном инфляционном периоде, но решающего ответа на вопрос о механизме расширения Вселенной пока не существует.
Поскольку никто точно не знает, почему началось расширение, вполне вероятно, что подобное событие может снова иметь место, то есть инфляционные взрывы могут повторяться. Эта теория была предложена русским физиком Андреем Линде из Стэнфордского университета. Она утверждает, что, какой бы механизм ни послужил причиной внезапного расширения Вселенной, он постоянно находится в действии, заставляя беспорядочно расширяться другие, отдаленные области Вселенной.
И тогда крошечный участок Вселенной может внезапно расшириться и «образовать почку», пустить побег дочерней вселенной, от которой, в свою очередь, может отпочковаться новая дочерняя вселенная; при этом процесс «почкования» продолжается беспрерывно. Представьте, что вы пускаете мыльные пузыри. Если дуть достаточно сильно, то можно увидеть, как некоторые из них делятся, образуя новые, «дочерние» пузыри. Подобным образом одни вселенные могут постоянно давать начало другим вселенным. Согласно этому сценарию, Большие взрывы происходили все время, происходят и сейчас. Если это верно, то, возможно, мы плаваем в море таких вселенных, словно пузырек, покачивающийся в океане среди других пузырьков. По сути, более подходящим словом будет не «Вселенная», а «Мультивселенная».
Линде называет свою теорию вечным, самовоспроизводящимся или хаотическим расширением, поскольку он подразумевает непрекращающийся процесс постоянного расширения параллельных вселенных. «Расширение заставляет нас предполагать существование многочисленных вселенных»{8}, — говорит Алан Гут, впервые предложивший инфляционную теорию.
Эта теория также предполагает, что от нашей Вселенной, возможно, когда-нибудь отпочкуется собственная дочерняя вселенная. Возможно, и наша собственная Вселенная обрела свое существование, отпочковавшись от более древней, более ранней вселенной.
По словам главы Королевского астрономического общества Великобритании сэра Мартина Риса, «то, что традиционно называлось Вселенной, может быть лишь частью целого ансамбля. Может существовать бесконечное множество других областей Вселенной, где действуют иные законы. Вселенная, в которой мы появились, принадлежит к необычному подмножеству, которое позволяет развиваться сложным формам и сознанию»{9}.
Исследования в области Мультивселенной[9] вызвали дискуссии о том, как выглядят другие вселенные, обитаемы ли они и даже возможен ли с ними контакт. Ученые Калифорнийского технологического института, Массачусетского технологического института, Принстонского университета, а также других научных центров сделали расчеты для решения вопроса, не противоречит ли законам физики множественность вселенных и возможность их достижения.
М-теория и одиннадцатое измерение
Сама идея параллельных вселенных когда-то рассматривалась учеными с изрядной долей подозрения и считалась областью деятельности мистиков, шарлатанов и больших оригиналов. Каждый ученый, осмеливавшийся работать в области изучения параллельных вселенных, подвергался насмешкам, даже рисковал своей карьерой, поскольку вплоть до сегодняшнего дня не существует экспериментального подтверждения существования параллельных вселенных.
Но в последнее время произошел серьезный прорыв в исследованиях, и теперь лучшие умы планеты интенсивно работают именно в этом направлении. Причиной столь внезапного поворота стало появление новой струнной теории и ее последней версии, М-теории, которая не только сулит раскрыть природу Мультивселенной, но и обещает возможность воочию «узреть Божий замысел», как когда-то красноречиво выразился Эйнштейн. Если теория окажется верной, то это будет главным достижением науки за последние 2000 лет, с тех самых пор как древние греки начали поиски единой связной и целостной теории Вселенной.
Количество опубликованных работ в области струнной теории и М-теории впечатляет — они исчисляются десятками тысяч. Этой теме были посвящены сотни международных конференций. В каждом университете мира либо есть группа, занимающаяся разработкой теории струн, либо делаются отчаянные попытки ее изучения. Хотя теорию и не проверить при помощи наших несовершенных современных приборов, она вызвала живейший интерес математиков, физиков-теоретиков и даже экспериментаторов, которые надеются протестировать периферию Вселенной (конечно, в будущем) при помощи мощных детекторов гравитационных волн в открытом космосе и огромных ускорителей частиц.
В конечном счете эта теория, возможно, ответит на вопрос, который волновал космологов с тех самых пор, как впервые была высказана идея Большого взрыва: а что было до него?
Для решения такой задачи нам потребуется весь потенциал наших знаний в области физики, анализ всех физических открытий, накопленных за века исследований. Иными словами, нам нужна теория всего — единая теория всех физических сил, действующих во Вселенной. Эйнштейн потратил последние тридцать лет своей жизни, пытаясь создать эту теорию, но ему это не удалось.
На сегодняшний день главной (и, собственно, единственной) теорией, которая может объяснить все многообразие сил, организующих Вселенную, является струнная теория, особенно ее последнее воплощение — М-теория. (М означает «мембрана», но может также означать «загадка» (от англ. mystery — тайна, загадка, головоломка), «магия» и даже «мать». Хотя, по существу, струнная теория и М-теория идентичны, последняя представляет собой более загадочную и значительно более сложную структуру, объединяющую различные теории струн.)
Еще древнегреческие философы предполагали, что все во Вселенной может состоять из крошечных частиц, называемых атомами. Сегодня же, используя мощные ускорители заряженных частиц, мы можем расщепить атом на электроны и ядро, которые, в свою очередь, могут быть расщеплены на еще более мелкие субатомные частицы. Но вместо открытия стройной и простой системы ученые стали свидетелями угнетающего факта: из ускорителей вылетают сотни субатомных частиц со странными названиями, такими как нейтрино, кварки, мезоны, лептоны, адроны, глюоны, бозоны и прочие. Трудно поверить, что природа на уровне выстраивания фундамента смогла создать целые джунгли странных атомных частиц, среди которых можно просто заблудиться.
В основе струнной теории и М-теории лежит идея о том, что удивительное разнообразие субатомных частиц, составляющих Вселенную, подобно нотам, по которым можно сыграть мелодию на скрипичной струне или мембране, натянутой, скажем, как кожа барабана. (Это не совсем обычные струны и мембраны; они существуют в десяти — и одиннадцатимерном гиперпространстве.)
Традиционно физики рассматривали электроны как бесконечно малые точечные частицы. Это означало, что им приходилось вводить свою точку для каждой из обнаруженных субатомных частиц, что очень сбивало с толку. Но струнная теория говорит, что, если бы у нас был супермикроскоп, который позволял бы заглянуть вглубь электрона, мы бы увидели, что это никакая не точечная частица, а крошечная вибрирующая струна. Она лишь кажется нам точечной частицей, поскольку наши приборы слишком несовершенны.
Эта струна вибрирует с различной частотой и различным резонансом. Если бы мы задели струну, то частота ее вибраций изменилась бы и она превратилась в другую субатомную частицу, например в кварк. Тронь ее опять, и она превращается в нейтрино. Таким образом можно объяснить «метель» субатомных частиц различными по высоте звуками вибрирующей струны. Так что мы можем считать сотни субатомных частиц, наблюдаемых в лаборатории, одним объектом — струной.
В такой терминологии законы физики, тщательно обоснованные тысячелетними экспериментами, являются не чем иным, как законами гармонии, которые справедливы для струн и мембран. Законы химии — это мелодии, которые можно сыграть на этих струнах. Вся Вселенная представляет собой божественную симфонию для «струнного оркестра». А «Божий замысел», о котором столь красноречиво говорил Эйнштейн, — это космическая музыка, резонирующая сквозь гиперпространство. (Возникает вопрос: если Вселенная — это симфония для струнного оркестра, то кто ее автор? Я вернусь к этому вопросу в главе 12.)
Конец Вселенной
Зонд Уилкинсона не только дал возможность увидеть подробнейший портрет юной Вселенной, он также открыл нам впечатляющую картину того, как наша Вселенная умрет. Та же самая загадочная антигравитационная сила, оттолкнувшая (растащившая) галактики друг от друга в начале времен, теперь толкает Вселенную навстречу судьбе. Раньше астрономы считали, что расширение Вселенной постепенно замедляется. Теперь мы понимаем, что на самом деле движение Вселенной ускоряется и галактики мчатся от нас прочь с возрастающими скоростями. Эта самая темная энергия, которая составляет 73 % материи и энергии во Вселенной, ускоряет расширение Вселенной, расталкивая галактики все с большей скоростью. «Вселенная ведет себя как водитель, притормаживающий на красный сигнал светофора и затем газующий на зеленый»{10}, — утверждает Адам Рис из Института исследований космоса с помощью космического телескопа.
Если какой-либо катаклизм не обратит процесс расширения вспять, то через 150 млрд лет наша галактика Млечный Путь окажется довольно одинокой: 99,99999 % близлежащих галактик «улетят» за пределы видимой Вселенной. Знакомые галактики, которые мы можем наблюдать в ночном небе, умчатся прочь с такой скоростью, что их свет никогда не достигнет нас тогдашних. Сами галактики не исчезнут, но окажутся слишком далеко, чтобы мы могли наблюдать их в свои телескопы. Хотя сейчас в видимой Вселенной содержится около 100 млрд галактик, «всего» через 150 млрд лет видимыми останутся лишь несколько тысяч в близлежащем скоплении галактик. Еще через некоторое время вся видимая Вселенная будет ограничена группой, состоящей из 36 галактик, в то время как миллиарды и миллиарды других галактик исчезнут за «горизонтом». (Такой вариант развития событий объясняется тем, что гравитация в пределах этой местной группы достаточно сильна для того, чтобы преодолеть силы разбегания. Ирония состоит в том, что, когда отдаленные галактики исчезнут из поля зрения, любой астроном из будущей темной эпохи будет не в состоянии вообще заметить расширение Вселенной, поскольку местная группа галактик не расширяется. Астрономы сверхдалекого будущего — если такие будут и займутся исследованием ночного неба — вряд ли поймут, что Вселенная расширяется; скорее, они придут к заключению, что Вселенная статична и состоит всего лишь из 36 галактик.)
Если эти силы антигравитации будут и дальше действовать в том же духе, то Вселенная в конце концов погибнет от холода. Вся разумная жизнь на планете, замерзая, будет биться в мучительной агонии, поскольку температура дальнего космоса близка к абсолютному нулю, а при такой температуре даже молекулы еле «шевелятся». В какой-то момент, спустя триллионы триллионов лет, звезды перестанут испускать свет, их ядерный реактор погаснет, израсходовав все топливо, и Вселенная погрузится в вечную ночь. Космическое расширение приведет к тому, что останется лишь холодная мертвая Вселенная, состоящая из черных звезд-карликов, нейтронных звезд и черных дыр. А в еще более далеком будущем даже черные дыры отдадут всю свою энергию, останется лишь безжизненная холодная туманность парящих элементарных частиц. В такой блеклой холодной Вселенной разумная жизнь невозможна в принципе. Железные законы термодинамики пресекут любую передачу информации в этой ледяной среде, и вся жизнь, вне всяких сомнений, прекратится.
В XVIII веке люди впервые осознали, что Вселенная может погибнуть от холода. Комментируя гнетущую концепцию о том, что законы физики, по-видимому, обрекают на смерть всю разумную жизнь, Чарльз Дарвин писал: «Та вера, которую я питаю в то, что человек в далеком будущем будет намного более совершенным существом, делает невыносимой даже саму мысль о том, что он и все сознательные существа обречены на полное вымирание после такого продолжительного медленного прогресса»{11}. К несчастью, последние данные спутника WMAP, видимо, подтверждают самые худшие опасения Дарвина.
Побег в гиперпространство
Существует закон физики, согласно которому разумная жизнь во Вселенной в конце концов непременно погибнет. Но существует и закон эволюции, согласно которому при изменении окружающей среды жизнь должна либо покинуть ее, либо адаптироваться к ней, либо погибнуть. Поскольку адаптироваться ко Вселенной, несущей ледяную смерть, невозможно, то остается лишь два варианта — либо умереть, либо покинуть эту Вселенную. Возможно ли, что, столкнувшись лицом к лицу с неотвратимой смертью Вселенной, цивилизации, отстоящие от нас на триллионы лет, достигнут успеха в разработке технологий, которые позволят покинуть нашу Вселенную и на суперкосмической «спасательной шлюпке» отправиться в другую вселенную, намного более молодую и «горячую»? Или же они используют свои высочайшие технологии для построения «временного кольца» и отправятся в прошлое, в котором температура на планетах была намного выше?
Некоторые физики, привлекая новейшие достижения науки, построили несколько правдоподобных, хотя и в высшей степени гипотетических схем, которые должны подтвердить реальность создания космических порталов или ворот в другую вселенную. Доски аудиторий по всему миру испещрены абстрактными уравнениями: физики вычисляют, возможно ли использование экзотической энергии и черных дыр для поисков туннеля, ведущего в другую вселенную. Может ли развитая цивилизация, по технологическим разработкам обгоняющая нашу на миллионы и миллиарды лет, воспользоваться известными законами физики для перехода в другую вселенную?
Космолог Стивен Хокинг из Кембриджского университета однажды пошутил: «Если бы пространственно-временные туннели существовали, они были бы идеальным средством быстрого перемещения в космосе. Можно было бы с утра пройти таким туннелем в другой конец галактики и вернуться к обеду»{12}.
Если же пространственно-временные туннели и порталы окажутся слишком тесными для массового переселения в другую вселенную, то есть еще один вариант: свести все информационное содержание развитой разумной цивилизации до молекулярного уровня и пропустить через туннель, а там оно снова организуется в самое себя. Таким образом, целая цивилизация сможет перенести свои «семена» через этот коридор и на новой почве снова расцвести во всей красе. Гиперпространство перестанет быть игрушкой в руках физиков-теоретиков и вполне сможет стать единственным спасением для разумной жизни, оказавшейся в умирающей Вселенной.
Но чтобы полностью разобраться в последствиях подобного шага, для начала необходимо понять, как мучительно космологи и физики шли к этим поразительным выводам. В этой книге мы рассмотрим историю космологии, уделяя особое внимание парадоксам, веками наводнявшим эту область науки. В конце концов они породили инфляционную теорию, которая, не противореча никаким экспериментальным данным, заставляет нас поддержать концепцию существования многочисленных вселенных.
Глава 2
Парадоксальная Вселенная
Черт бы побрал эту Солнечную систему! Плохое освещение, планеты слишком далеко, полно комет, задумка слабовата. Я бы сотворил [Вселенную] получше.
Присутствуй я при сотворении мира, дал бы пару советов, как получше обустроить Вселенную.
В пьесе «Как вам это понравится» Шекспир написал бессмертные слова:
В Средние века мир был поистине сценой, но сценой маленькой, статичной, состоящей из крошечной плоской Земли, вокруг которой небесные тела следовали по своим совершенным орбитам. На кометы смотрели как на недобрые знамения, предвещающие смерть королей. Когда в 1066 году яркая комета появилась над Англией, она привела в ужас саксонскую армию короля Гарольда, и саксы стремительно отступили, проиграв сражение наступающей победоносной армии Вильгельма Завоевателя, тем самым подготовив сцену и все декорации для становления современной Англии.
Та же комета проплыла над Англией во второй раз в 1682 году, вновь став причиной восторга и ужаса в Европе. Казалось, каждый человек от короля до крестьянина был зачарован этой нежданной небесной гостьей, пронесшейся в небесах. Откуда появилась комета? Куда она направлялась и предвестием каких событий служила?
Один богатый джентльмен, астроном-любитель Эдмунд Галлей, был настолько заинтригован кометой, что решил поинтересоваться мнением одного из величайших ученых того времени, сэра Исаака Ньютона. Когда он спросил Ньютона, какая сила управляет движением кометы, ученый спокойно ответил, что комета двигалась по эллипсообразной орбите согласно закону обратных квадратов (то есть сила притяжения, действующая на комету, менялась обратно пропорционально квадрату ее расстояния от Солнца). Ньютон объяснил, что на самом деле он давно наблюдал за кометой при помощи изобретенного им телескопа (того самого телескопа-рефлектора, которым в наше время пользуются астрономы всего мира) и та двигалась в полном соответствии с законом всемирного тяготения, который он, Ньютон, открыл еще 20 лет назад.
Галлей был невероятно поражен: «Откуда вам это известно?»{13} «Я вычислил это», — ответил Ньютон. Галлей даже не подозревал, что тайну небесных тел, волновавшую еще первых людей, обративших взор к небесам, можно разъяснить с помощью нового закона всемирного тяготения.
Пораженный значительностью этого монументального прорыва, Галлей предложил щедро финансировать публикацию новой теории. В 1687 году с помощью Галлея и при его финансовой поддержке Ньютон опубликовал свою грандиозную работу «Математические начала натуральной философии» (Philosophiae Naturalis Principia Mathematical). Эта работа была провозглашена тогда (и признается сейчас) одной из самых важных из когда-либо опубликованных в мире. Разом все ученые, не имеющие понятия о других законах Солнечной системы, оказались в состоянии самостоятельно предсказывать с величайшей точностью траекторию движения небесных тел.
«Начала» стали настолько популярны в салонах и при королевских дворах Европы, что поэт Александр Поуп писал:
Был этот мир глубокой тьмой окутан.
Да будет свет! И вот явился Ньютон[11].
(Галлей понял, что поскольку орбита кометы представляет собой эллипс, то можно вычислить, когда она снова появится над Лондоном. Просмотрев старые записи, он обнаружил, что кометы 1531, 1607 и 1682 годов были на самом деле одной и той же кометой. Комету, оказавшую столь сильное влияние на становление современной Англии в 1066 году, на протяжении всей истории видели многие люди, в том числе Юлий Цезарь. Галлей предсказал, что комета вновь вернется в 1758 году. Когда же комета уже через годы после кончины Галлея и Ньютона действительно вернулась в предсказанный год на Рождество, ее назвали кометой Галлея.)
Ньютон открыл закон всемирного тяготения тогда, когда в связи с эпидемией чумы закрылся Кембриджский университет и ученый был вынужден уехать в свое поместье в Вульсторп. Ньютон с нежностью вспоминал прогулку в тамошнем парке, когда увидел, как упало яблоко. Тут он задал себе вопрос, которому в конечном счете суждено было изменить ход человеческой истории: если падает яблоко, падает ли также и Луна? В момент гениального озарения Ньютон понял, что яблоки, Луна, вообще все планеты подчиняются одному и тому же закону всемирного тяготения, что их падение (точнее, их движение) связано с законом обратных квадратов. Когда Ньютон обнаружил, что математика XVII века слишком примитивна, чтобы описать этот закон, он изобрел новое направление в математике — вычислительную математику, чтобы определить скорость падения яблок и лун.
В «Началах» Ньютон изложил также законы механики, которые определяют траектории всех земных и небесных тел. Эти «Начала» легли в основу теории конструирования машин, использования энергии пара, а также создания локомотивов, которые, в свою очередь, способствовали промышленной революции и развитию современной цивилизации. В наши дни все небоскребы, мосты и ракеты строятся с учетом ньютоновских законов механики.
Ньютон не только дал нам вечные законы механики; он также перевернул наше видение мира, представил совершенно новую картину Вселенной, где таинственные законы, управляющие движением небесных тел, были идентичны законам, действующим на Земле. Сцена жизни отныне уже не была окружена наводящими ужас небесными знамениями; актеры подчинялись тем же законам, что и декорации.
Парадокс Бентли
Поскольку «Начала» были работой революционной, они вызвали к жизни первые парадоксы в теориях о строении Вселенной. Если весь мир — сцена, то насколько она велика? Конечен мир или бесконечен? Это извечный вопрос, которым задавался еще римский философ Лукреций Кар. «Вселенная не ограничена ни в одном направлении, — говорил он. — Ведь совершенно ясно, что вещь может иметь предел лишь в том случае, если вне ее существует что-либо. Поэтому во всех измерениях, будь то вперед или назад, вверх или вниз, Вселенной нет конца»{14}.
Но теория Ньютона раскрыла и парадоксы, присущие любой теории конечной или бесконечной Вселенной. Простейшие вопросы ведут к целой бездне противоречий. Еще греясь в лучах славы, которую принесла ему публикация «Начал», Ньютон обнаружил, что его теория гравитации изобилует парадоксами. В 1692 году священник, преподобный отец Ричард Бентли, написал обезоруживающе простое, но огорчительное для Ньютона письмо. Тот факт, что гравитация всегда притягивала и никогда не отталкивала, написал Бентли, означает, что звезды, входящие в какое-либо скопление, естественным образом столкнутся друг с другом. Если Вселенная конечна, то ночное небо вместо того, чтобы быть неизменным и статичным, должно было бы представлять собой сцену невероятного побоища, поскольку звезды при столкновении друг с другом сливались бы в огненные суперзвезды. Но Бентли также обратил внимание на то, что если бы Вселенная была бесконечна, то сила, действующая на любой предмет, также была бы бесконечной и тянула бы и вправо, и влево, что стало бы причиной того, что звезды разорвало бы в клочья в результате огненных катаклизмов.
Поначалу казалось, что Бентли разгромил теорию Ньютона в пух и прах. Либо Вселенная конечна (и слилась в огненный шар), либо она бесконечна (в таком случае все звезды должны разлететься в стороны). Оба варианта разрушали новую теорию Ньютона. Эта проблема впервые в истории обнаружила едва различимые внутренние парадоксы, свойственные любой теории гравитации при применении ее ко всей Вселенной.
Поразмыслив, Ньютон написал Бентли, что обнаружил слабое место в его аргументации. Ученый писал, что считает Вселенную бесконечной, но совершенно однородной. Таким образом, если звезду тянет в какую-то сторону бесконечное количество звезд, то эту силу уравновешивает тяготение в противоположном направлении другого бесконечного количества звезд. Все силы во всех направлениях сбалансированы, и это создает статичную Вселенную. Таким образом, если сила гравитации всегда только притягивает, то единственным решением парадокса Бентли будет существование однородной бесконечной Вселенной.
Ньютон действительно нашел слабое место в аргументации Бентли. Однако он был достаточно умен, чтобы сознавать неубедительность своего ответа. Он признал в письме, что предлагаемое им решение, несмотря на техническую правильность, было нестабильным внутренне. Однородная, но бесконечная Вселенная Ньютона была похожа на карточный домик: на вид устойчивая, она могла рассыпаться, стоило ее чуть потревожить. Можно рассчитать, что, даже если одна-единственная звезда чуть-чуть качнется, это станет началом цепной реакции и скопления звезд начнут разрушаться. Своим ответом Ньютон отсылал к «божественной силе», которая якобы не дает развалиться его карточному домику. «Необходимо воздействие непрерывного чуда, чтобы Солнце и звезды, находящиеся в покое, не устремились друг к другу под действием силы тяготения»{15}, — писал он.
Ньютон рассматривал Вселенную как гигантские часы, запущенные Господом в начале времен и идущие с тех пор, повинуясь трем законам механики и не требуя божественного вмешательства. Но временами Господу все же приходилось вмешиваться и слегка настраивать механизм Вселенной, чтобы она не разрушилась. (Иными словами, иногда Господу приходилось вмешиваться, чтобы декорации на сцене творения не развалились и не рухнули на головы актеров.)
Парадокс Ольберса
Кроме парадокса Бентли существовал еще более интересный парадокс, который не могла обойти ни одна теория бесконечной Вселенной. Ольберс задался вопросом: почему ночное небо черное? Еще во времена Иоганна Кеплера астрономы знали, что если бы Вселенная была однородной и бесконечной, то, куда бы мы ни бросили взгляд, мы видели бы небо, освещенное бесконечным количеством звезд. В какую бы точку ночного неба ни был устремлен наш взгляд, он в конце концов натыкался бы на несметное количество звезд, и мы видели бы небо, залитое бесконечным количеством звездного света. Тот факт, что ночное небо — черное, а не яркое, веками считался глубоким космическим парадоксом.
Парадокс Ольберса, подобно парадоксу Бентли, обманчиво прост, но он терзал душу многим поколениям философов и астрономов. Оба парадокса опираются на наблюдения, что в бесконечной Вселенной гравитационные силы и световое излучение могут слагаться, что ведет к бесконечным значениям и того и другого. За сотни лет было предложено множество неверных объяснений. Кеплер был настолько обеспокоен этим парадоксом, что просто постулировал: Вселенная конечна, находится в оболочке, а потому лишь ограниченное количество звездного света достигает наших глаз.
Замешательство, вызванное этим парадоксом, было столь массовым (если массой считать ученое сообщество), что, согласно результатам исследования, проведенного в 1987 году, 70 % учебников по астрономии давали неверный ответ на этот вопрос.
Можно было попытаться решить парадокс Ольберса, предположив, что звездный свет поглощается пылевыми облаками. Именно такой ответ в 1823 году дал сам Генрих Вильгельм Ольберс, когда впервые точно сформулировал парадокс. Ольберс написал: «Очень удачно, что Земля не получает свет из каждой точки небесного свода! Однако при такой невообразимой яркости и температуре, которые в 90 000 раз выше тех, каким мы подвергаемся сейчас, Всевышний легко мог создать организмы, способные адаптироваться и к таким экстремальным условиям»{16}. В объяснение того факта, что Землю не заливает «свет столь же яркий, как и солнечный диск», Ольберс предположил, что, должно быть, пылевые облака поглощают сильный жар, делая жизнь на Земле возможной. Например, огненный центр нашей галактики Млечный Путь, который по справедливости должен «сжигать» все небо, в действительности скрыт пылевыми облаками. Если мы посмотрим в направлении созвездия Стрельца, где находится центр Млечного Пути, вместо ослепительного огненного шара нашим глазам предстанет лишь темное пятно.
Но и пылевые облака не могут служить убедительным объяснением парадокса Ольберса. За достаточно длительное (чтобы не сказать — бесконечное) время пылевые облака поглотят свет бесконечного количества звезд и в конце концов засверкают сами подобно звездной поверхности. Таким образом, даже пылевые облака должны бы сиять в ночном небе.
По этой логике можно предположить, что чем дальше находится звезда, тем слабее ее свет. Факт по сути своей верен, но он не может служить ответом. Если мы взглянем на участок ночного неба, то увидим, что самые далекие звезды действительно тусклые, но чем дальше мы устремляем взгляд, тем больше звезд видим. Такого в однородной Вселенной не должно было бы быть — там небо казалось бы белым. (Это объясняется тем, что интенсивность звездного света, обратно пропорциональная квадрату расстояния до звезды, компенсировалась бы количеством звезд, прямо пропорциональным квадрату расстояния.)
Как ни странно, первым в истории человеком, решившим парадокс Ольберса, стал американский автор детективов Эдгар Аллан По, который увлекался астрономией. Перед самой смертью он опубликовал многие из своих наблюдений в неоднозначной философской поэме под названием «Эврика: Прозаическая поэма». Вот замечательный отрывок:
Если бы непрерывность звезд была бесконечна, тогда бы заднее поле неба являло нам единообразную светящесть, подобную исходящей от Млечного Пути, ибо безусловно не было бы точки на всем этом заднем поле, где не существовало бы звезды. Единственный способ поэтому, при таком положении вещей, понять пустоты, что открывают наши телескопы в бесчисленных направлениях, — предположить, что рассеяние от незримого заднего поля так несметно, что ни один его луч доселе совершенно не мог нас достигнуть{17}.
В заключение По писал о том, что эта мысль «слишком прекрасна, чтобы не содержать в себе Истину как неотъемлемую свою составляющую».
Это и есть ключ к верному ответу. Возраст Вселенной не бесконечен. Рождение мира было. Нашему взгляду доступна лишь некая часть звездного света. Свету наиболее отдаленных от нас звезд не хватило времени, чтобы достичь наших взоров. Космолог Эдвард Харрисон, впервые обнаруживший, что По разрешил парадокс Ольберса, написал: «Когда я впервые прочел слова По, я был поражен: как мог поэт, в лучшем случае ученый-любитель, 140 лет назад уловить верное объяснение, в то время как в наших колледжах до сих пор преподают объяснение неправильное?»{18}
В 1901 году шотландский физик лорд Кельвин также нашел верное решение. Он осознал, что, глядя на ночное небо, мы видим его в прошлом, а не таким, каково оно сейчас, поскольку скорость света, хоть и гигантская по земным меркам (299 792 458 м/с), все же конечна, и свету отдаленных звезд необходимо время, чтобы достичь Земли. По подсчетам Кельвина, для того чтобы ночное небо было белым, Вселенная должна бы растянуться на сотни триллионов световых лет. Но поскольку Вселенной не триллионы лет, небо будет только черным. (Существует также второй фактор, который способствует решению вопроса, почему ночное небо черное; и этот фактор — конечный жизненный цикл звезд, измеряющийся миллиардами лет.)
Недавно появилась возможность экспериментально проверить правильность решения По при помощи таких спутников, как космический телескоп «Хаббл». Столь мощные телескопы, в свою очередь, позволяют нам ответить на вопрос, который задают даже дети: «Как далеко от нас самая далекая звезда? И что лежит за самой далекой звездой?» Чтобы ответить на эти вопросы, астрономы запрограммировали космический телескоп «Хаббл» для решения исторической задачи — заснять самую отдаленную точку Вселенной. Для того чтобы уловить чрезвычайно слабые сигналы из отдаленнейших уголков космоса, телескопу предстояло выполнить беспрецедентную работу: быть направленным в одну и ту же точку в небе рядом с созвездием Ориона на протяжении нескольких сотен часов, что требовало точнейшей настройки телескопа на протяжении четырех сотен оборотов Земли. Проект был столь сложен, что его выполнение растянулось более чем на четыре месяца.
В 2004 году на первых полосах газет всего мира была опубликована ошеломляющая фотография. На ней — скопление десяти тысяч ранних галактик, возникших из хаоса Большого взрыва. «Возможно, нам довелось увидеть конец начала»{19}, — заявил Антон Кикемир из Института исследований космоса с помощью космического телескопа. На фотографии изображено беспорядочное скопление рождающихся галактик на расстоянии более 13 млрд световых лет от Земли, то есть понадобилось более 13 млрд лет для того, чтобы их свет достиг Земли. Поскольку самой Вселенной лишь 13,7 млрд лет, это означает, что галактики сформировались примерно через полмиллиарда лет после возникновения Вселенной, когда первые звезды и галактики рождались из «кипящего бульона» газов, оставшихся после Большого взрыва. «"Хаббл"переносит нас на расстояние, откуда камнем докинуть до Большого взрыва»{20}, — заявил астроном Массимо Стивавелли из того же института.
Но тут возникает вопрос: что лежит за пределами самой далекой галактики? При внимательном рассмотрении этой замечательной фотографии становится понятно, что между галактиками — лишь тьма. Именно эта тьма является причиной того, что ночное небо — черное. Это последняя граница, за которой мы не видим света дальних звезд. Однако эта тьма и сама является микроволновым реликтовым излучением. Таким образом, окончательный ответ на вопрос, почему ночное небо черное, таков: на самом деле ночное небо совсем не черное. (Если бы наши глаза каким-то образом могли воспринимать микроволновое излучение, а не только видимый спектр, мы бы увидели излучение, порожденное Большим взрывом и наполняющее ночное небо. В каком-то смысле излучение Большого взрыва появляется каждую ночь. Если бы наши глаза могли улавливать микроволны, мы бы увидели, что за самой далекой звездой обретается само творение.)
Эйнштейн-мятежник
Законы, открытые Ньютоном, так хорошо объясняли мир, что науке понадобилось более 200 лет, чтобы сделать очередной серьезный шаг. Этот шаг был связан с работой Альберта Эйнштейна. Начало его карьеры никак не предвещало такой революции в науке. Получив степень бакалавра в Политехническом институте в Цюрихе (Швейцария) в 1900 году, Эйнштейн обнаружил, что получить работу нет никакой надежды. Его карьеру разрушили его же преподаватели, не любившие самонадеянного дерзкого студента, который часто срывал занятия. Тоскливые безысходные письма свидетельствуют о тяжелой депрессии. Альберт считал себя неудачником и тяжелой обузой для родителей. В одном письме он признавался, что даже собирался свести счеты с жизнью. «Несчастье моих бедных родителей, у которых за столько лет не было ни единой минуты счастья, тяжелее всего давит на мои плечи… Я лишь обуза для родственников… Наверняка было бы лучше, если бы я вообще не жил»{21}, — с горечью писал он.
В отчаянии Альберт подумывает о том, чтобы бросить науку и пойти работать в страховую компанию. Он даже взялся за частные уроки, но поспорил с работодателем и его уволили. Когда подруга Эйнштейна Милева Марич неожиданно забеременела, он сознавал, что ребенок останется незаконнорожденным, потому что на женитьбу у него нет средств. (Никто не знает, что в конце концов стало с его незаконнорожденной дочерью Лизерль.) Глубокое потрясение, которое испытал Эйнштейн, когда внезапно умер его отец, оставило в душе незаживающую рану, от которой он так никогда и не излечился. Ученый всегда помнил, что отец умер, считая сына неудачником.
Хотя 1901–1902 годы были самым трудным периодом в жизни Эйнштейна, от забвения его спасла рекомендация сокурсника Марселя Гроссмана, который, потянув «за кое-какие ниточки», обеспечил Эйнштейну работу скромного клерка в Швейцарском патентном бюро в Берне.
Парадоксы относительности
На первый взгляд, патентное бюро было не самым перспективным местом, где могла начаться величайшая со времен Ньютона революция в физике. Но были у этой службы и свои преимущества. Быстро разделавшись с заявками на патенты, загромождавшими его стол, Эйнштейн откидывался на стуле и погружался в детские воспоминания. В молодости он прочел «Естественнонаучные книги для народа» Аарона Бернштейна — «работу, которую я прочел, затаив дыхание», вспоминал Альберт. Бернштейн предлагал читателю представить, что он движется параллельно с электрическим током, когда тот передается по проводам. В 16 лет Эйнштейн задал себе вопрос: на что был бы похож луч света, если бы его можно было догнать? Он вспоминал: «Такой принцип родился из парадокса, на который я натолкнулся в 16 лет: если я гонюсь за лучом света со скоростью с (скорость света в вакууме), я должен наблюдать такой луч света как пространственно колеблющееся электромагнитное поле в состоянии покоя. Однако, кажется, такой вещи не может существовать — так говорит опыт и так говорят уравнения Максвелла»{22}. В детстве Эйнштейн считал, что если двигаться параллельно лучу света со скоростью света, то свет будет казаться замерзшим, подобно застывшей волне. Однако никто не видел замерзшего света, так что тут явно что-то было не так.
В начале века существовали в физике два столпа, на которых покоилось все: ньютоновская теория механики и гравитации и теория света Максвелла. В 1860-е годы шотландский физик Джеймс Кларк Максвелл доказал, что свет состоит из пульсирующих электрических и магнитных полей, постоянно переходящих друг в друга. Эйнштейну же предстояло открыть, к его великому потрясению, что эти два столпа противоречат друг другу, и одному из них предстояло рухнуть.
В уравнениях Максвелла он обнаружил решение загадки, которая не давала ему покоя его на протяжении 10 лет. Эйнштейн нашел в них то, что упустил сам Максвелл: уравнения доказывали, что свет перемещается с постоянной скоростью, при этом было совершенно неважно, с какой скоростью вы пытались догнать его. Скорость света с была одинаковой во всех инерциальных системах отсчета (то есть системах отсчета, двигающихся с постоянной скоростью). Стояли ли вы на месте, ехали на поезде или примостились на мчащейся комете, вы бы обязательно увидели луч света, несущийся впереди вас с постоянной скоростью. Неважно, насколько быстро вы двигались бы сами, — обогнать свет вам не под силу.
Такое положение дел быстро привело к появлению множества парадоксов. Представьте на миг астронавта, пытающегося догнать луч света. Астронавт стартует на космическом корабле, и вот он несется голова в голову с лучом света. Наблюдатель на Земле, ставший свидетелем этой гипотетической погони, заявил бы, что астронавт и луч света двигаются бок о бок. Однако астронавт сказал бы нечто иное, а именно: луч света уносился вперед, как если бы космический корабль находился в состоянии покоя.
Вопрос, вставший перед Эйнштейном, заключался в следующем: как могут два человека настолько по-разному интерпретировать одно и то же событие? По теории Ньютона, луч света всегда можно догнать; в мире Максвелла это было невозможно. Эйнштейна внезапно озарило, что уже в фундаментальных основах физики таился фундаментальный же изъян. Эйнштейн вспоминал, что весной 1905 года «в моей голове разразился шторм». Он наконец нашел решение: время движется с различной скоростью в зависимости от скорости движения. По сути, чем быстрее двигаться, тем медленнее движется время. Время не абсолютно, как когда-то считал Ньютон. По Ньютону, время однородно во всей Вселенной и длительность одной секунды на Земле будет идентична одной секунде на Юпитере или Марсе. Часы абсолютно синхронизированы со всей Вселенной. Однако, по Эйнштейну, различные часы во Вселенной идут с разными скоростями.
Эйнштейн понял, что если бы время могло меняться в зависимости от скорости{23}, то другие величины, такие как длина, масса и энергия, также должны меняться. Он обнаружил, что чем быстрее тело двигается, тем сильнее оно сокращается в направлении движения (что иногда называют «сокращением Лоренца — Фицджеральда»). Подобным образом, чем быстрее вы двигаетесь, тем тяжелее вы становитесь. (По сути, когда вы приблизитесь к скорости света, время замедлится до полной остановки, ваши размеры сократятся до полного нуля, а ваша масса возрастет до бесконечности. Полный абсурд. Это причина того, что нельзя превысить световой барьер, который является скоростным пределом во Вселенной.)
Это странное искажение пространства-времени склонило некоего поэта написать следующее:
Жил-был парень по имени Фиск,
Фехтуя, он был крайне быстр,
И так был он быстр во владении,
Что Фицджеральдово сокращение
Превратило рапиру в диск.
Подобно тому как прорыв Ньютона объединил земную и небесную физику, Эйнштейн объединил время и пространство. Но он также показал, что материя и энергия взаимосвязаны и потому могут переходить друг в друга. Если объект становится тем тяжелее, чем быстрее он движется, это означает, что энергия движения трансформируется в материю. Обратное также справедливо — материя может быть преобразована в энергию. Эйнштейн подсчитал, сколько энергии будет преобразовано в материю, и вывел формулу Е = mс², то есть даже крошечное количество материи m умножается на огромное число (квадрат скорости света) при превращении в энергию Е. Таким образом, был обнаружен таинственный источник энергии звезд — им оказалось преобразование материи в энергию согласно уравнению, которое справедливо для всей Вселенной. Тайну звезд оказалось возможно раскрыть благодаря простому утверждению, что скорость света одинакова во всех инерциальных системах отсчета.
Так, как когда-то Ньютон, Эйнштейн изменил наш взгляд на подмостки жизни. В мире Ньютона все актеры точно знали, который час и как измеряется расстояние. Ход времени и размеры сцены никогда не менялись. Но относительность принесла нам причудливое понимание пространства и времени. Во Вселенной Эйнштейна наручные часы каждого актера показывают свое время. Это означает, что сверить все часы, тикающие на сцене, невозможно. На репетицию, назначенную в полдень, разные актеры явятся в разное время. И вообще, когда актеры бегают по сцене, происходят вещи необыкновенные. Чем быстрее они двигаются, тем медленнее тикают их часы и тем более тяжелыми и плоскими становятся их тела.
Потребовались годы, чтобы широкое научное сообщество приняло взгляды Эйнштейна. Но сам Эйнштейн не стоял на месте; он хотел применить свою новую теорию относительности к самой гравитации. Он осознавал всю сложность своего предприятия — в одиночку заниматься самой прогрессивной и «тяжеленной» теорией своего времени, точнее, опережающей свое время. Макс Планк, создатель квантовой теории, предостерегал Эйнштейна: «Как старший друг я должен предупредить тебя, чтобы ты не делал этого, ибо, во-первых, ты не добьешься успеха, а даже если и добьешься, никто тебе не поверит»{24}.
Эйнштейн понимал, что его новая теория относительности разрушала теорию гравитации Ньютона. По Ньютону, гравитация распространялась во Вселенной мгновенно. Но тут возникает вопрос, который иногда задают даже дети: «Что будет, если Солнце исчезнет?» По Ньютону, вся Вселенная тут же станет свидетельницей исчезновения Солнца. Но по теории относительности это невозможно, поскольку информация об исчезновении звезды ограничена скоростью света. Согласно теории относительности, внезапное исчезновение Солнца вызвало бы сферическую ударную гравитационную волну, распространяющуюся во все стороны со скоростью света. Наблюдатели, находящиеся с внешней стороны ударной взрывной волны, сказали бы, что Солнце продолжает светить, поскольку гравитация еще не успела достичь их. Но наблюдатель внутри волны сказал бы, что Солнце исчезло. Для разрешения этой проблемы Эйнштейн ввел совершенно новые понятия пространства и времени.
Сила как искривление пространства
Ньютон понимал пространство и время как огромную пустую арену, где события происходят в соответствии с его законами механики. Когда-то сцена была полна чудес и тайн, но, по существу, оставалась инертной и неподвижной, лишь пассивной свидетельницей ритуального танца природы. Однако Эйнштейн перевернул это представление. Для Эйнштейна сама сцена становится важной составляющей жизни. Во Вселенной Эйнштейна пространство и время уже не были статичной сценой, как предполагал (и предписывал) Ньютон, они приобрели динамичность, изгибались и извивались причудливым образом. Представьте, что сцену жизни заменил батут, на котором все актеры мягко проседают под собственным весом. При таком положении дел мы увидим, что сцена становится столь же важной, как и актеры.
Представьте, что на кровать положили шар для игры в боулинг и он мягко утопает в матрасе. Теперь подтолкните небольшой шарик по искривленной поверхности матраса. Шарик будет двигаться. Ньютонианец, увидев с большого расстояния шарик, огибающий большой шар, пришел бы к выводу, что существует некая таинственная сила, с которой шар для игры в боулинг воздействует на маленький шарик. Он сказал бы, что шар для боулинга мгновенно воздействует на маленький шарик, притягивая его к центру.
Для релятивиста, который наблюдает движение шарика с близкого расстояния, совершенно ясно, что никакой силы не существует вообще. Есть лишь искривление матраса, которое и заставляет шарик двигаться по кривой. Он говорит: «При чем тут притяжение? Есть лишь давление, которое оказывает матрас на маленький шарик». Теперь возьмем вместо шарика Землю, вместо большого шара — Солнце, а вместо матраса — космос, и мы поймем, что Земля движется вокруг Солнца не из-за гравитационного притяжения, а потому, что Солнце искажает космическое пространство вокруг Земли и тем создает давление, заставляющее Землю двигаться по окружности.
Таким образом, Эйнштейн пришел к выводу, что гравитация больше похожа на материю, нежели на невидимую силу, действующую мгновенно в пределах Вселенной. Если быстро встряхивать материю, то образовавшиеся волны побегут по ее поверхности с определенной скоростью. Это разрешает парадокс исчезнувшего Солнца. Если гравитация — побочный продукт искривления пространства-времени, то исчезновение Солнца можно сравнить (вернемся к матрасу) с резким подскоком с постели шара для игры в боулинг. Когда матрас резко возвращает себе первоначальную форму, по поверхности простыни бегут волны, двигающиеся с определенной скоростью. Таким образом, сведя гравитацию к искривлению пространства и времени, Эйнштейн смог примирить ее с теорией относительности.
Представьте себе муравья, пытающегося бежать по смятому листу бумаги. Он будет передвигаться, раскачиваясь, будто пьяный матрос, влево и вправо. Муравей горячо возразил бы, что он не пьян, утверждая, что его качает таинственная сила, дергая то влево, то вправо. Для муравья это ничем не заполненное пространство полно таинственных сил, мешающих ему идти прямо. Однако, глядя на муравья с близкого расстояния, мы видим, что никакая сила его не тянет. Его «толкают» складки мятого листа бумаги. Силы, воздействующие на муравья, — всего лишь иллюзия, вызванная искривлением пространства. Воздействие силы — на самом деле лишь «толчок», когда он перешагивает через складку бумаги. Другими словами, не гравитация притягивает, а пространство отталкивает.
В 1915 году Эйнштейну наконец удалось завершить то, что он назвал общей теорией относительности, и это стало фундаментом, на котором покоится вся космология. В этой удивительной картине мира гравитация выступает не как независимая сила, заполняющая Вселенную, а как видимый эффект искривления пространства-времени. Теория Эйнштейна была так всеобъемлюща, что подытожить ее ему пришлось в длиннющем уравнении. В этой блестящей новой теории степень искривления пространства и времени определялась количеством материи и энергии, содержащихся в них. Представьте, что в пруд бросили камень. По поверхности пруда пойдет рябь, вызванная падением камня. Чем больше камень, тем более неровной станет поверхность пруда. Похожим образом, чем больше звезда, тем сильнее искривление пространства-времени, окружающего звезду.
Рождение космологии
Эйнштейн попытался использовать подобный принцип для описания Вселенной как целостного образования. Его ожидало столкновение с парадоксом Бентли. В 1920-е годы большинство астрономов верило в то, что Вселенная однородна и статична. Поэтому Эйнштейн отталкивался от предположения, что Вселенная однородно заполнена пылью и звездами. В одной из моделей Вселенная сравнивается с большим воздушным шаром или мыльным пузырем. Мы живем на его поверхности. Звезды и галактики, которые мы видим вокруг себя, можно сравнить с точками, нарисованными на поверхности воздушного шарика.
К своему удивлению, всякий раз, когда Эйнштейн пытался решить собственные уравнения, он приходил к выводу, что Вселенная динамична. Ученый столкнулся с той самой проблемой, которую сформулировал Бентли более чем за два столетия до него. Поскольку гравитация всегда притягивает и никогда не отталкивает, ограниченное количество звезд должно взорваться в огненном катаклизме. Однако это противоречило господствующему в начале XX века мнению, гласившему, что Вселенная статична и однородна.
Несмотря на всю свою революционность, Эйнштейн не мог поверить, что Вселенная может двигаться. Подобно Ньютону и множеству остальных ученых, Эйнштейн верил в статичную Вселенную. Так, в 1917 году Эйнштейн был вынужден ввести в свои уравнения новое слагаемое, некую поправку — новую, антигравитационную силу, которая толкала звезды прочь друг от друга. Эйнштейн назвал ее космологической константой, и она выглядела гадким утенком, запоздалым дополнением к его теории. Эйнштейн без достаточных на то оснований, чтобы полностью нейтрализовать силы гравитации, ввел антигравитацию, создавая тем самым статичную Вселенную. Другими словами, Вселенная стала статичной просто по воле Эйнштейна: внутреннее сокращение Вселенной благодаря гравитации нейтрализовалось внешней силой темной энергии. (На протяжении 70 лет, вплоть до открытий последних лет, эта антигравитационная сила считалась в физике чем-то вроде сироты.)
В 1917 году нидерландский физик Виллем де Ситтер предложил еще одно решение для уравнений Эйнштейна, где вселенная была бесконечной и полностью лишенной всякой материи. По сути, вселенная состояла только из энергии, содержащейся в вакууме, — космологической константы. Этой чистой антигравитационной силы было достаточно, чтобы вызвать стремительное экспоненциальное расширение вселенной. Даже без всякой материи эта темная энергия могла создать расширяющуюся вселенную.
Теперь перед физиками встала дилемма. Во вселенной Эйнштейна существовала материя, но не было движения. Во вселенной де Ситтера было движение, но не существовало материи. Во вселенной Эйнштейна космологическая константа оказалась необходимой для нейтрализации гравитационного притяжения и создания статичной вселенной. Во вселенной де Ситтера одной космологической константы было достаточно для создания расширяющейся вселенной.
В конце концов в 1919 году, когда Европа, залечивая раны, пыталась выбраться из руин Первой мировой войны, по всему миру были разосланы команды ученых-астрономов для проверки новой теории Эйнштейна. Эйнштейн предположил, что искривление пространства-времени Солнцем будет достаточным для искривления звездного света, проходящего вблизи Солнца. Величину искривления звездного света можно было точно подсчитать, подобно тому как можно вычислить, насколько стекло искривляет свет. Но поскольку днем сияние Солнца скрывает все звезды, для проведения решающего эксперимента ученым пришлось ждать наступления солнечного затмения.
Группа, возглавляемая британским астрофизиком Артуром Эддингтоном, отправилась на остров Принсипи в Гвинейском заливе (у побережья Западной Африки), чтобы запечатлеть искривление света звезд вокруг Солнца во время будущего солнечного затмения. Другая команда под руководством Эндрю Кроммелина отправилась в деревню Собраль в северной Бразилии. Собранные ими данные свидетельствовали, что средняя величина отклонения звездного света равняется 1,79 с дуги, что вполне соотносилось с предсказанной Эйнштейном 1,74 с дуги (неточность объяснялась погрешностью измерений в ходе эксперимента). Иными словами, свет действительно искривлялся вблизи Солнца. Позднее Эддингтон заявил, что проверка теории Эйнштейна стала одним из величайших моментов его жизни.
6 ноября 1919 года на совместном заседании Королевского общества и Королевского астрономического общества в Лондоне нобелевский лауреат и президент Королевского общества Дж. Дж. Томпсон торжественно объявил, что это «одно из величайших достижений в истории человеческой мысли. Это открытие не отдаленного острова, а целого континента новых научных идей. Это величайшее открытие в области гравитации с тех пор, как Ньютон сформулировал свои законы»{25}.
(По легенде, позднее некий репортер спросил Эддингтона: «Ходят слухи, что во всем мире лишь трое понимают теорию Эйнштейна. Вы, должно быть, один из них». Эддингтон стоял, ни говоря ни слова, и репортер добавил: «Не скромничайте, Эддингтон». Эддингтон пожал плечами и ответил: «Я вовсе не скромничаю. Я просто задумался, кто же может быть третьим»{26}.)
На следующий день лондонская Times вышла с сенсационным заголовком: «Научная революция — Новая теория Вселенной — Идеи Ньютона низвергнуты». Этот заголовок определил момент, когда Эйнштейн стал фигурой мирового значения, посланцем звезд.
Заявление было настолько ошеломляющим, а отход Эйнштейна от идей Ньютона настолько радикальным, что в обществе возникла негативная реакция — даже выдающиеся физики и астрономы осудили эту теорию. В Колумбийском университете Чарльз Лейн Пуэр, преподаватель астрономии, возглавил кампанию по критике теории относительности. Он объявил: «Я чувствую себя так, будто прогулялся с Алисой по Стране чудес и побывал на чаепитии у Безумного Шляпника»{27}.
Причина, по которой теория относительности противоречит здравому смыслу, заключается не в том, что она неверна, а в том, что наш здравый смысл не в состоянии представить реальность. Мы — странное произведение природы. Мы заселяем необычный объект недвижимости, где температура, плотность и скорости довольно умеренны. Однако в «настоящей Вселенной» температуры могут быть невероятно высокими в центре звезды или чрезвычайно низкими в открытом космосе, а субатомные частицы проносятся в космическом пространстве со скоростью, близкой к скорости света. Другими словами, наш здравый смысл сформировался в крайне необычной темной части Вселенной, на Земле, а потому неудивительно, что наш рассудок не может постичь истинные размеры Вселенной. Проблема не в теории относительности, а в нашем убеждении, что наш рассудок в состоянии объяснить реальность.
Будущее Вселенной
Хотя теория Эйнштейна успешно объясняла такие астрономические явления, как искривление звездного света вокруг Солнца и легкое смещение орбиты Меркурия, все же космологические прогнозы были не совсем ясны. Положение вещей в значительной степени прояснил русский физик Александр Фридман, нашедший самые общие и реалистичные решения уравнений Эйнштейна. И в наши дни эти решения изучаются в курсе общей теории относительности. (Он получил их в 1922 году, умер через три года, и о его работе вспомнили лишь спустя много лет.)
Теория Эйнштейна в общем случае описывается рядом чрезвычайно сложных уравнений, для решения которых зачастую необходим компьютер. Однако Фридман предположил, что Вселенная динамична, а затем привел два упрощающих допущения (называемые космологическим принципом): Вселенная изотропна (она выглядит одинаково вне зависимости от того, в каком направлении мы смотрим из данной точки) и гомогенна (она однородна, в какой бы точке Вселенной мы ни находились).
Если применить эти упрощающие допущения, уравнения обретают решения. (По сути, и решение Эйнштейна, и решение де Ситтера представляли собой лишь частные случаи более общего решения Фридмана.) Примечательно, что его решения зависели лишь от трех параметров:
1. H, определяющая темп расширения Вселенной (сегодня его называют постоянной Хаббла в честь астронома, который действительно измерил расширение Вселенной).
2. Омега (Ω), определяющая среднюю плотность материи во Вселенной.
3. Лямбда (Λ) — энергия пустого космоса, или темная энергия.
Многие космологи всю свою профессиональную жизнь провели в попытках определить точное значение этих трех величин. Неуловимое взаимодействие между этими тремя постоянными определяет будущее развитие нашей Вселенной. Например, поскольку гравитация выражается силами притяжения, то плотность Вселенной (Ω) действует в качестве некоего тормоза, замедляющего расширение Вселенной. Представьте, что вы подбросили камень. В обычных условиях гравитация достаточно велика, чтобы изменить движение камня, который падает обратно на Землю. Однако если подбросить камень с достаточной силой, то он преодолеет действие гравитации и навсегда вырвется в открытый космос. Подобно камню, Вселенная первоначально расширилась в результате Большого взрыва, но материя (или Ω) действует на расширение Вселенной как тормоз, точно так же как земная гравитация воздействует в качестве тормоза для подброшенного камня.
Теперь допустим, что Λ, энергия пустого космоса, равна нулю. Пусть Ω — плотность Вселенной, разделенная на критическую плотность. (Критическая плотность Вселенной равна приблизительно 5 атомам водорода на кубический метр. Она в среднем соответствует одному атому водорода в объеме 25 баскетбольных мячей — настолько пустынна Вселенная.)
Ученые считают, что если Ω < 1, то во Вселенной недостаточно материи, чтобы обратить вспять первоначальное расширение, вызванное Большим взрывом. (Подобно примеру с подброшенным камнем: если масса Земли недостаточно велика, то камень преодолеет земную гравитацию и улетит прочь.) В результате Вселенная будет расширяться вечно, погружаясь в леденящий холод, — температуры ее приблизятся к абсолютному нулю. (Это принцип работы холодильника или кондиционера{28}. Расширяясь, газ охлаждается. Например, газ, циркулирующий в трубке вашего кондиционера, расширяется, охлаждая трубку и вашу комнату.)
Если Ω >1, то во Вселенной достаточно материи и гравитации, чтобы в конце концов изменить направление космического расширения. В результате расширение Вселенной прекратится, а затем она начнет сжиматься. (Так же как в случае с подброшенным камнем: если масса Земли достаточно велика, то камень в конце концов достигнет наивысшей точки, а затем снова упадет на Землю.) Когда звезды и галактики устремятся навстречу друг другу, температуры начнут расти. (Каждый, кто хоть раз накачивал велосипедную шину, знает, что при сжатии газ нагревается. Механическая работа накачивания воздуха преобразует энергию гравитации в тепловую.) В конце концов температуры станут настолько высокими, что всякая жизнь исчезнет, а во Вселенной начнется процесс Большого сжатия. (Астроном Кен Кросвелл называет этот процесс «от создания к сжиганию».)
Третий вариант заключается в том, что Ω = 1. Иными словами, плотность Вселенной равна критической плотности. В таком случае Вселенная балансирует на грани между двумя крайностями, но при этом она будет продолжать расширяться вечно. (Как мы увидим, этот сценарий развития вписывается в инфляционную картину.)
Конец ознакомительного фрагмента.
Приведённый ознакомительный фрагмент книги Параллельные миры: Об устройстве мироздания, высших измерениях и будущем космоса предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
1
Еще более подробную картину получил спутник Planck Европейского космического агентства. — Прим. науч. ред.
2
К сегодняшнему дню наиболее полное сканирование произвел спутник Planck Европейского космического агентства. — Прим. науч. ред.
3
Planck, запущенный в 2009 году, выполнил свою миссию и, что касается анизотропии реликтового излучения, представил окончательные результаты в начале 2015 г. — Прим. науч. ред.
7
Первую (и до сих пор) реалистичную инфляционную модель предложил Алексей Старобинский из Института им. Ландау. — Прим. науч. ред.
8
Хотя общепринятый перевод этого высказывания Эйнштейна — «ничто не может перемещаться быстрее света», в данном контексте адекватен именно дословный перевод, поскольку автор таким образом обыгрывает это высказывание, приравнивая «ничто» к пустому пространству. — Прим. ред.
9
Тут главное слово «теоретических», поскольку все очень модельно-зависимое и никаких наблюдательных данных в поддержку гипотезы Мультивселенной пока не существует. — Прим. науч. ред.
10
В классическом переводе Т. Щепкиной-Куперник эти слова звучат следующим образом: «Весь мир — театр. В нем женщины, мужчины — все актеры. У них свои есть выходы, уходы», но, поскольку слово stage означает не только «театр», но и «сцену», а автор на протяжении книги проводит аналогию Вселенной именно со сценой, мы дали такой перевод. — Прим. ред.
23
Сжатие объектов, движущихся с околосветовой скоростью, в действительности было открыто Хендриком Лоренцом и Джорджем Френсисом Фитцджеральдом незадолго до Эйнштейна, но они не поняли этого эффекта. Они пытались анализировать этот эффект в рамках исключительно ньютонианской системы, предположив, что это сжатие представляет собой электромеханическое сжатие атомов, создающееся вследствие прохождения сквозь «эфирный ветер». Сила идей, предложенных Эйнштейном, состояла в том, что он не только получил всю специальную теорию относительности из одного принципа (постоянства скорости света), он также интерпретировал его как универсальный природный принцип, противоречащий теории Ньютона. Таким образом, эти искажения являлись свойствами, присущими пространству-времени, а не электромеханическими искажениями вещества. Великий французский математик Анри Пуанкаре, вероятно, подошел ближе всех к выводу тех же уравнений, что получил Эйнштейн. Но лишь у одного Эйнштейна были полный набор уравнений и глубокое понимание физической подоплеки проблемы.
28
Когда газ расширяется, он охлаждается. Для примера: в вашем холодильнике внешнее и внутреннее пространство камеры соединяется трубкой. Когда газ попадает внутрь холодильника, он расширяется, охлаждая трубку и продукты. Когда он уходит из внутренней части холодильника, трубка сокращается и нагревается. Есть также механический насос, который закачивает газ через трубку. Таким образом, задняя стенка холодильника греется, а внутреннее пространство охлаждается. В звездах все происходит в обратном порядке. Когда сила гравитации сжимает звезду, та разогревается до достижения температур, при которых начинается синтез.