Книга содержит описание принципов работы электролампового прибора политрон, который в 60—90-х гг. демонстрировал уникальные феномены взаимодействия человека и машины в широком спектре задач. Оптическая система «Метатрон», состоящая из кристаллов, лазеров и зеркал, является развитием класса устройств, демонстрирующих эффекты влияния сознания человека на технику и влияния приборов на техногенные и природные процессы, она используется для прогнозирования и нормирования аномальных стихийных явлений.
Приведённый ознакомительный фрагмент книги Приборы управления реальностью. От Политрона к Метатрону предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
Политрон
Одним из первых приборов нелинейного преобразования многомерных сигналов является электровакуумный прибор политрон, показавший уникальные возможности при использовании в самых различных областях и решении прикладных задач. Реальные результаты прибора намного превышали расчётные и не поддавались классической трактовке, количественные показатели разрешающей способности политрона не соответствуют классическим объяснениям физики, что позволило выдвигать гипотезы реальности проявления и регистрации квантовых эффектов в его работе, о влиянии сознания человека на работу прибора.
Политрон — вакуумный электронно-лучевой прибор с электростатическим управлением пучком медленных (нерелятивистских) электронов для нелинейного преобразования сигналов. Изобретатели политрона: А. И. Ставицкий и В. Н. Жук (авторское свидетельство №113634, 10.12.1956), серийный выпуск был начат в 70-х годах XX века.
Альберт Николаевич Никитин, Андрей Николаевич Даровских и Анатолий Иванович Ставицкий — главные исследователи политрона.
Политрон представляет собой функциональный электронно-лучевой прибор, принцип действия которого основан на взаимодействии электрических полей с электронным лучом в вакууме. Политрон осуществляет пространственно-временное преобразование сигналов, имеет широкие функциональные возможности, высокую надёжность, устойчивость к внешним воздействиям и простоту работы. Политрон применялся в области диагностики, идентификации и моделирования. Прибор использовался в системах преобразования информации, в том числе в системах преобразования многомерных сигналов, в системах пространственной фильтрации, распознавания и классификации сигналов, в системах управления, регистрации полей, статистического моделирования и измерения.
Экспериментальные результаты были получены в процессе решения целого ряда прикладных задач в интересах военно-промышленного комплекса и подтверждены большим числом протоколов, докладов, публикаций. Политрон показывает неклассическое поведение и превышает на несколько порядков разрешающую способность традиционных методов распознавания и классификации сигналов, позволяет находить и определять полезную информацию при высоком уровне белого шума или зашифрованную.
Конструкция политрона
Конструктивно политрон выполнен в виде электровакуумного прибора и напоминает обычную электронно-лучевую трубку с двумя функциональными зонами: формирующей и операционной. Конструкция прибора обеспечивает повышенную чувствительность к микроструктуре сигнала.
На рис. 1 показан внешний вид политрона. Длина прибора 170 мм, поперечный диаметр операционной зоны 60 мм, диаметр формирующей зоны 35 мм. Частотный диапазон, габариты, малая потребляемая мощность и долговечность позволяют использовать политрон в системах с различными конфигурациями технических средств.
Схематическое изображение конструкции показано на рис. 2, паспорт политрона, основные технические данные приведены на сайте (`http://www.politron.freeservers.com/pasport.html).
Первоначально прибор был задуман как электрически управляемый нелинейный или функциональный преобразователь величин тока или напряжения в диапазоне частот от 0 Гц до 30 МГц.
Высокая надёжность прибора при эксплуатации объясняется отсутствием внутри политрона замкнутых электрических цепей. Вся работа прибора регулируется путём изменения характеристик поля. Единственным наиболее уязвимым местом является узел катода, гарантированный срок службы которого и определяет общую долговечность прибора.
Политрон — система нелинейного преобразования многомерных сигналов.
Принцип работы
Политрон — это электровакуумная лампа с фигурным анодом и множеством функциональных электродов в области её операционной зоны. В отличие от осциллографических трубок — систем линейного преобразования электрических сигналов в изображение, политрон является системой нелинейного преобразования сигналов. Особенностью политрона является возможность использовать его в системах преобразования информации при работе с помехами, вносящими какие-либо искажения в выходной сигнал, и такие искажения могут рассматриваться как полезный продукт, отражающий результат взаимодействия сигнала и системы его преобразования.
Политрон может быть использован для моделирования случайных сигналов и процессов как одномерных, обычно временных, так и двумерных — пространственных.
Политрон используется в схемах преобразования сигналов, при этом форма представления входного электрического сигнала может быть цифровой, аналоговой и комбинированной. Прибор можно использовать в качестве преобразователя многомерных сигналов с возможностью их последующего восстановления. Политрон позволяет реализовывать динамические операторы преобразования сигналов, обладающие способностью к адаптации.
Принцип работы политрона позволяет зафиксировать и учесть взаимовлияние прибора и среды, в которой он находится и с которой взаимодействует.
Политрон является преобразователем пространственного (или многомерного) сигнала во временной. В приборе многомерность преобразования обеспечивается конструкцией и расположением функциональных пластин, на выходе многомерный сигнал представляется в виде изменения функции тока во времени. Сохранение многомерности является важнейшей особенностью прибора в качестве преобразователя информации о физических процессах.
Поле в вакууме является основной формирующей средой. В исходной схеме участвуют 10 пар функциональных пластин и 2 отклоняющие пластины. Чтобы прибор выступал в качестве многомерного преобразователя сигналов, их подают на функциональные пластины. Система с десятью пластинами позволяет обработать информацию, представленную десятимерным вектором. Мерность по выходам при использовании одного прибора равна 10, а число степеней свободы ограничивается только чувствительностью приборов, соединённых с ним в единую систему. Функциональные и отклоняющие пластины представляют собой точечные источники потенциала. Распределение потенциалов в операционной зоне с учётом объёмного заряда (луча) описывается уравнениями Пуассона для полубесконечных областей, ограниченных верхним, нижним рядами пластин и парой отклоняющих. Так как основной особенностью прибора является расположение пластин операционной зоны в объёме х, у, z, то эти характеристики являются объёмно-электрическими. Выполнение операционной зоны в политроне в виде прямоугольной области создаёт возможности для использования прибора при решении задач с ортогональной системой представления информации. При необходимости усложнить или повысить мерность системы возможно последовательное и параллельное включение политронов, возможно расположение приборов по кругу.
Принцип работы политрона основан на стабилизации положения луча в центре операционной зоны прибора. Движение луча (объёмного заряда) осуществляется в относительной системе координат, связанной со значением заряда, сосредоточенного в луче. Верхний предел изменения входных сигналов имеет расширенный динамический диапазон и ограничивается фактически только характеристиками усилителя, а не диапазоном допустимых по паспорту входных напряжений политрона.
Схемы работы политрона
Политрон использовался в схемах с отрицательной обратной связью. Отрицательная обратная связь может быть введена через корректирующие пластины или через функциональные пластины. При замыкании цепи обратной связи на политроне возможно построение самонастраивающейся схемы. Политрон позволяет замыкать цепь обратной связи между системой обработки информации и исследуемой системой непосредственно в точку управления. Возможность использования политрона при решении задач с обратной связью позволяет использовать прибор в системах управления.
Прибор может использовать сигналы как детерминированные, так и случайные, при этом обратимость схемы определяет мерность каждого из сигналов.
Особенности политрона: при дискретном входе, осуществляемом через функциональные пластины, выходной сигнал получается в аналоговой форме в виде непрерывного сигнала; преобразующей средой является электрическое поле; высокое быстродействие в обработке сигналов; прибор можно использовать в системах с изменяющимися во времени параметрами; прибор используется в одномерных моделях и для решения задач с большей мерностью; прибор даёт возможность регистрировать информацию от 10 источников на внешних устройствах, имеющих один входной канал.
Прибор имеет распределённую по пространству систему источников сигнала, связанную единой структурой и определённым характером взаимодействия.
Политрон может использоваться как переходный блок от объекта с распределёнными параметрами к объекту с сосредоточенными или наоборот. Обратимость входов и выходов политрона в зависимости от схемы включения позволяет использовать его, в частности при дискретно-аналоговом преобразовании.
Политрон может использоваться для преобразования информации о детерминированных физических процессах, в том числе о реальных физических процессах, знания о которых ограничены, представленной сигналами случайного характера или их характеристики невозможно точно измерить, которые можно отнести к процессам случайного характера. Прибор может быть использован в устройствах формирования случайных сигналов в качестве нелинейного преобразователя, позволяет сформировать случайный сигнал с регулируемыми вероятностными характеристиками, преобразовать принятый случайный сигнал к случайному сигналу с заданными характеристиками. Это позволяет применять устройство при управлении сложными процессами и в имитационном моделировании.
На основе политрона может быть построен генератор случайных чисел.
Область применения политрона
Политрон использовался в следующих задачах:
— в сфере связи на ближних и дальних расстояниях через эфир и через сплошные среды с предельно высокой помехозащищенностью и минимальными энергетическими затратами без искажения информации;
— для распознавания образов, в том числе и звуков, с высокой достоверностью, скоростью и минимальными энергетическими затратами;
— для прогнозирования чрезвычайных ситуаций как естественного, так и искусственного происхождения, раннее прогнозирование стихийных явлений (землетрясений, наводнений и т.д.) и катастроф;
— прогнозирование погоды;
— обеспечение надёжности работы и безопасности различных технических систем и устройств. Нормирование взаимодействия с техническими и биологическими системами;
— в технологии объёмного «видения электрона»;
— для прогнозирования в геологоразведке, для анализа полезных ископаемых и геологических месторождений;
— в картографической классификации ледяного покрова акваторий Северного морского пути;
— в качестве решающего устройства при интегрировании дифференциальных уравнений до 10-го порядка практически мгновенно;
— для передачи информации на расстоянии (опыт проводился с двумя подлодками и двумя политронами на большой глубине);
— в медицине, биологии при решении задач ранней диагностики и реабилитации различных патологий;
— для регистрации неконтактных воздействий врача-психотерапевта на пациента;
— для регистрации мыслительных процессов человека;
— для разработки искусственного интеллекта.
Политрон и гипотезы реальности проявления квантовых эффектов в его работе
Связь воздействия политрона с научными представлениями
В 1956 г. А. И. Ставицкий и В. Н. Жук разработали электронно-лучевой прибор, названный политроном (авторское свидетельство СССР). Он предназначался для практических целей, которые в то время с квантовыми представлениями не ассоциировались. Однако в начале 70-х годов А. И. Ставицкий понял, что реальные характеристики политрона не вписываются в классические представления. Как потом выяснилось, схема политрона во многом похожа на схему опыта Ааронова — Бома для проверки влияния векторного потенциала поля на квантовую фазу элементарной частицы — электрона. Примерно через полтора десятка лет этот опыт был поставлен, а характер зависимости фазы частицы от векторного потенциала был описан Р. Фейнманом. Однако, в отличие от схемы Ааронова — Бома, в политроне крайне затруднено изучение, понимание и, следовательно, признание квантовых эффектов, что и явилось причиной столь продолжительных трудностей на пути широкого применения прибора. Попытки выявления квантовой структуры электрического сигнала с помощью политрона, уже запущенного в промышленное производство, начались с 1972 г. его автором Ставицким А. И., продолжалось в экспериментах Никитина А. Н., Ставицкого А. И. и др.
Это предположение осталось на уровне гипотезы, так как прямое наблюдение интерференции, недоступное из-за конструктивных особенностей политрона, не закладывалось в его конструкцию изначально и целенаправленно. Конструктивные параметры политрона не соответствуют привычным представлениям об условиях наблюдения квантовых эффектов на макроуровне. В политроне длина пути электрона не превышает нескольких сантиметров. При этом реальные результаты прибора намного превышали расчётные и не поддавались классической трактовке, количественные показатели разрешающей способности политрона не соответствуют классическим объяснениям физики. В политроне был реализован метод преобразования сигналов в объёмном электрическом поле в вакууме в качестве промежуточной преобразующей среды и свободно перемещающегося в нем объёмного электрического заряда в качестве исполнительного элемента, что позволило решать задачу преобразования пространственной многомерной информации во временной сигнал, на выходе многомерный сигнал представляется в виде изменения функции тока во времени.
ЛФ-9П
Идеи, высказанные авторами политрона и участниками экспериментов, объясняющие его уникальные возможности, опубликованы в десятках научных статей, практически реализованы в сотнях изобретений и устройств, защищённых авторскими свидетельствами и патентами.
Политрон выпускался серийно под наименованием ЛФ-9П, что позволило его использовать в различных конфигурациях и системах, в практической работе для решения прикладных задач для осуществления операций восприятия, преобразования и передачи информации в динамических режимах, в многочисленных экспериментах в различных областях. Серийное производство было прекращено после нецелесообразности использования ламповой техники в технических устройствах нового уровня.
Сомнения в реальности квантовых эффектов в политроне связаны с тем, что волновая фаза электронов, образующих ток в электрической цепи, не сохраняется на расстояниях, практически значимых для передачи информации, а информационный обмен посредством электрического тока возможен только на уровне его измеримых величин, а на микроуровне он неизбежно теряется в шумах. Неоднократные измерения показали, что волновая фаза электронов, образующих ток в электрической цепи, не сохраняется на расстояниях, практически значимых для передачи информации. Волновые свойства образующих ток электронов не проявляются в очевидной форме на макроуровне, в том числе на выходе политрона, даже если установлено, что доставленная ими на его вход информация на самом деле как-то влияет на выходные характеристики.
Политрон использовался для изучения интерференционных явлений на медленных (нерелятивистских) электронах, заданных характером граничных условий. Процесс интерференции регистрировался в виде непрерывно изменяющейся величины тока на выходе политрона, поддающегося непосредственному измерению. Подобные результаты другими методами пока получить не удалось2. По мнению исследователей, политрон производит регистрацию квантовых явлений, возникающих вследствие интерференции (т.е. процесса наложения когерентных электронных пучков, возникающих при их отражении от электродов), что обеспечивает его чувствительность ко всему окружающему и возможность регистрации любых явлений как контактным, так и бесконтактным методом. Регистрация происходит в явном виде в низкочастотном диапазоне при нормированных граничных условиях. В политроне недоступно прямое наблюдение интерференции, без которой невозможно себе представить получение информации, обусловленной волновой фазой носителя. В связи с недоступностью прямого наблюдения волновых процессов рассматривались косвенные свидетельства полного информационного обмена. В политроне были зафиксированы процессы, эквивалентные интерференции по конечному эффекту выделения фазовой информации, несмотря на её отсутствие в конструкции политрона. При этом волновые свойства электронов, образующие ток на входе политрона, могут проявляться в виде качественной закономерности выходных сигналов, согласно которой характеристики стационарного состояния источника сигнала могут сохранять свою форму независимо от выбора времени измерения.
В результате проведённых экспериментов с использованием политрона были расширены представления об электрическом токе как носителе информации, сделаны выводы, что информация, характеризуется не только энергетической, но и неэнергетической компонентой, не поддающейся измерению макроскопическими способами. Неэнергетическая компонента была выявлена в виде модуляции макросигнала в процессе информационного обмена. В отличие от энергетической, она не поддаётся прямому измерению и может быть отнесена к классу экспериментально неизмеримых величин, существование которых не отрицается. При этом она не может быть представлена никакими комбинациями прямых измерений энергетических величин.
В качестве физического фактора, ответственного за неэнергетический информационный обмен, рассматривается векторный потенциал поля, так как закономерности, выявленные в результате анализа модели и подтверждённые результатами экспериментов, совпадают с закономерностями, вытекающими из интеграла Фейнмана, который определяет изменение квантовой фазы частицы как результат действия на неё векторного потенциала поля.
Приведённый ознакомительный фрагмент книги Приборы управления реальностью. От Политрона к Метатрону предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других