Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать

Ирина Якутенко, 2021

Коронавирус появился неожиданным подарком под новый 2020 год и за несколько месяцев мир превратился в сериал-катастрофу. Невероятными усилиями государства остановили распространение вируса, но уже осенью эпидемия вновь стала набирать обороты. Что мы знаем о SARS-CoV-2, почему он убивает одних и бессимптомно проходит у других, безопасна ли вакцина и когда будет найдено лекарство, как мы лечим COVID-19 без него, можно ли бороться с патогеном, не закрывая планету, – книга отвечает на эти и многие другие вопросы. Хотя пандемия еще не закончилась, и мы все время получаем новые данные о вирусе, изложенные в тексте фундаментальные основы уже не поменяются: они служат каркасом, на который читатель сможет нанизывать новые знания.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Глава 3. Откуда он взялся

Как бы ни казалось странным, но большинство вирусов мы получили от животных. Впрочем, странным это кажется лишь на первый взгляд. Если поразмышлять еще немного, странной как раз покажется идея уникальных человечьих вирусов. Люди всего лишь один вид из примерно 5,3 млн обитающих на планете эукариот[10] — грубо говоря, всех, кроме вирусов, бактерий и архей{16}. По другим оценкам{17}, число видов на Земле ближе к 8,7 млн. А если вспомнить, что примерно 99,9 % всех когда-либо живших видов вымерло, счет пойдет на миллиарды. И даже если отбросить совсем далеких от нас существ вроде растений, грибов, простейших и так далее и оставить только млекопитающих и птиц, цифры все равно будут космическими. И у каждого из этих миллионов видов есть вирусы. С одной стороны, как мы убедились в прошлой главе, раз вцепившись в какого-нибудь хозяина, вирус изо всех сил старается приспособиться к нему, шаг за шагом обходя всевозможные защитные механизмы. Это часто приводит к узкой специализации. Однако, если в результате случайного события патоген окажется в другом организме, который не сможет сразу дать отпор и позволит вирусу хоть немного размножиться, у него появляется колоссальное преимущество перед остальными за счет расширения кормовой базы. Поэтому перескоки вирусов с одного хозяина на другого случаются, хотя и не очень часто. Но, учитывая гигантское число потенциальных хозяев и самих вирусов, даже такие редкие прыжки приводят к тому, что множество вирусов не ограничиваются одним носителем, а умеют заражать сразу несколько порой довольно далеких видов. Уникальная способность вирусов стремительно изменяться дополнительно помогает им, позволяя быстро подстроиться под особенности биохимии нового хозяина.

Такие перескоки порой происходят буквально у нас на глазах. Например, долгие годы ученые были уверены, что парвовирус FPLV (от английского feline panleukopenia virus, вирус панлейкопении кошек) заражает только кошек и енотов. Однако в середине 1940-х болезнь, аналогичная той, что вызывается FPLV, была обнаружена у детенышей норок, причем летальность составила 80 %, примерно столько же, сколько у непривитых котят. Через 30 лет очень похожее заболевание выявили уже у собак, и это была настоящая пандемия, распространившаяся по всему миру за несколько месяцев{18}. Вирус норок назвали MEV, а собачью разновидность — CPV-2. Генетический анализ показал, что MEV и CPV-2 — потомки исходного вируса FPLV: мутации, которые отличают их от предка, позволяют «молодым» вирусам проникать в клетки новых хозяев и уходить от их иммунного ответа{19}.

Так что смена вирусом хозяина вполне рядовое событие. И вероятность, что этим новым хозяином окажется человек, очень немаленькая. По крайней мере, именно так было до тех пор, пока люди не отдалились от остальных обитателей планеты. В наши дни, когда самое дикое животное, которое большинство детей встречают в жизни — домашняя кошка, — кажется, что перенос инфекций из нетронутой природы людям маловероятен. Это в корне ошибочное представление.

Несмотря на урбанизацию, люди и животные продолжают тесно общаться. Более того, в последние годы шансы получить неприятные подарки от зверей и птиц только растут{20}. У этой контринтуитивной тенденции множество причин. Человечество увеличивается, и ему нужно место для жизни и выращивания сельскохозяйственных растений и животных. Освобождая территорию для новых деревень, полей и пастбищ, люди вырубают леса и встречаются с их обитателями, которые в норме избегают человека. Благодаря развитой торговле животные и птицы, как мертвые, так и еще нет, попадают в страны, отделенные друг от друга горами, океанами и огромными расстояниями. Еще 100 лет назад таких перевозок было намного меньше. Наконец, изменение климата заставляет множество видов массово мигрировать в новые места обитания. Из 335 новых инфекционных болезней, появившихся в период с 1940 по 2004 год, 60,3 % пришли к нам от животных[11]. Такие болезни называют зоонозами, и 71,8 % из них перескочили на людей от диких животных{21}.

Но разные вирусы перепрыгивают с хозяина на хозяина с неодинаковой вероятностью. Среди животных «талант» выращивать способные к межвидовым прыжкам вирусы тоже распределен неравномерно. В случае нынешней эпидемии оба этих фактора максимально благоприятствовали появлению нового человеческого вируса — в том смысле, что сочетание коронавирусов и летучих мышей уже очень давно обещало породить что-нибудь этакое. Впервые об этом всерьез забеспокоилась группа китайских исследователей под руководством Ши Чжэнли из Института вирусологии в Ухане. Исследовательница уже долгие годы изучает вирусы летучих мышей, Ши и ее коллеги регулярно отправляются в экспедиции в самые глухие пещеры Китая, где водятся разные виды этих млекопитающих. Ученые ловят их, привозят в лабораторию, выделяют из крови вирусы и исследуют. За любовь к рукокрылым коллеги прозвали Ши Чжэнли Batwoman, то есть «Женщина — летучая мышь».

В 2005 году Ши и соавторы опубликовали статью{22} в Science, одном из самых авторитетных журналов, где печатаются работы ученых, занимающихся естественными науками. В своем исследовании Ши и коллеги сравнили фрагменты расшифрованных геномов вирусов, выделенных из 408 летучих мышей девяти разных видов, которых они отловили в четырех китайских провинциях. Авторы установили, что, хотя глобально геномы вирусов разных рукокрылых схожи, несколько участков очень сильно отличаются друг от друга. Один из вариабельных фрагментов находился в последовательности S-белка, того самого, который необходим для связывания с рецептором клетки-хозяина и проникновения в нее. Если в общем геномы вирусов разных летучих мышей схожи более чем на 90 %, то в этой части доля отличий возрастала до 40 %. Как отметили Ши и коллеги, столь значительная вариабельность хватательной части S-белка указывает, что мышиные коронавирусы обладают большим потенциалом по части смены хозяев. Главными подозреваемыми, работающими как инкубатор новых вирусов, ученые назвали насекомоядных подковоносых летучих мышей, которые встречаются практически по всему миру. Более того, авторы предложили возможный механизм перескока мышиных вирусов на человека.

Местом встречи коронавирусов подковоносых мышей и их потенциальных хозяев-людей исследователи назвали китайские рынки, где торгуют живностью (в блюдах китайской кухни в качестве ингредиентов используются, кажется, все известные представители флоры и фауны). Сами подковоносы не очень популярны, а вот разнообразные крыланы расходятся в буквальном смысле как горячие пирожки. В дикой природе (а также в вольерах и клетках) крыланы встречаются с подковоносами и могут заражаться их вирусами. Дальнейшее только вопрос времени: через укус, помет или плохо прожаренное мясо паразиты могут относительно легко проникнуть в организм человека. А учитывая склонность коронавирусов к мутациям, и особенно к мутациям в S-белке, вполне может случиться, что любитель экзотических блюд, охотник или продавец получит вирусный штамм, способный цепляться не только за мышиные, но и за человечьи рецепторы.

И хотя точное место, откуда летучемышиные коронавирусы перескочили на людей, неизвестно (версию про уханьский рынок морепродуктов поддерживают не все ученые), само по себе предсказание, что однажды какой-нибудь из сожителей рукокрылых захочет сменить партнера, сбылось с пугающей точностью. Более того, за два года до эпидемии другая группа китайских исследователей привела веские доказательства того, что коронавирусы летучих мышей регулярно предпринимают попытки найти себе новый дом. Изучив образцы крови людей, живущих поблизости от крупных мышиных колоний, исследователи обнаружили у 2,7 % жителей антитела к летучемышиным коронавирусам{23}. Но эти штаммы, очевидно, были не слишком удачливыми и не смогли закрепиться в человеке. В отличие от SARS-CoV-2.

Но почему именно летучие мыши? Что заставило Ши и других ученых сосредоточиться на этих странных животных? Причин сразу несколько. Первая: рукокрылых страшно много. Они составляют около 20 % от всех известных видов млекопитающих. То есть каждый пятый вид млекопитающих на планете — какая-нибудь летучая мышь. Больше видов только у грызунов. Если считать в штуках, цифры тоже впечатляют: рукокрылые любят жить колониями, многие из которых насчитывают десятки миллионов особей, как, например, крупнейшее из известных общежитий летучих мышей в пещере Брэкен возле техасского Остина, где обитают около 30 млн этих животных. Пол и стены мышиных убежищ покрыты густым слоем помета, поэтому в пещеры регулярно наведываются фермеры. Экскременты рукокрылых — ценное (и, главное, бесплатное) удобрение для полей. Версия, что первыми заразившимися были не продавцы летучих мышей, а китайские фермеры, жаждущие удобрять поля биопродуктом, также рассматривается как одна из приоритетных.

Конец ознакомительного фрагмента.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Сноски

10

Если говорить о более строгом определении, эукариоты — это существа, большая часть ДНК которых спрятана в ядре — особом пространстве, отделенном от цитоплазмы мембраной. В противовес им у прокариот, к которым относятся бактерии и археи, такого выделенного пространства для хранения ДНК нет. Геном прокариот свободно «болтается» в цитоплазме либо может быть связан с какими-то структурами, но он в любом случае не отделен от цитоплазмы мембраной стенкой.

11

Впрочем, в подавляющем числе случаев эти патогены эффективно не распространялись среди людей, и болезни ограничивались очень небольшим количеством зараженных.

Комментарии

16

M. J. Costello, R. M. May, and N. E. Stork, “Can We Name Earth’s Species Before They Go Extinct?” Science, vol. 339, no. 6118, pp. 413–416, Jan. 2013.

17

K. J. Locey and J. T. Lennon, “Scaling laws predict global microbial diversity,” Proc. Natl. Acad. Sci., vol. 113, no. 21, pp. 5970–5975, May 2016.

18

Y. Ikeda, “Feline Host Range of Canine parvovirus: Recent Emergence of New Antigenic Types in Cats,” Emerg. Infect. Dis., vol. 8, no. 4, pp. 341–346, Apr. 2002.

19

É. Leal et al., “Regional adaptations and parallel mutations in Feline panleukopenia virus strains from China revealed by nearly-full length genome analysis,” PLoS One, vol. 15, no. 1, p. e0227705, Jan. 2020.

20

K. E. Jones et al., “Global trends in emerging infectious diseases,” Nature, vol. 451, no. 7181, pp. 990–993, Feb. 2008.

21

K. E. Jones et al., “Global trends in emerging infectious diseases,” Nature, vol. 451, no. 7181, pp. 990–993, Feb. 2008.

22

W. Li, “Bats Are Natural Reservoirs of SARS-Like Coronaviruses,” Science (80-.)., vol. 310, no. 5748, pp. 676–679, Oct. 2005.

23

N. Wang et al., “Serological Evidence of Bat SARS-Related Coronavirus Infection in Humans, China,” Virol. Sin., vol. 33, no. 1, pp. 104–107, Feb. 2018.

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я