Оптимизация потенциала взаимодействия атомных частиц. Алгоритмы формулы SSWI: от анализа до оптимизации. Книга представляет разнообразные алгоритмы, позволяющие анализировать, оптимизировать и применять формулу SSWI – ключевой индикатор синхронизированного взаимодействия частиц в ядрах атомов. Рассмотрены методы определения, классификации, предсказания SSWI, а также оценка статистической значимости и нелинейные взаимодействия. Настольная книга для исследователей и практиков.»
Приведённый ознакомительный фрагмент книги SSWI: алгоритмы и практические примеры. Алгоритмы и коды, практические примеры предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
Линейная регрессия с использованием параметров α, β, γ, δ, ε для прогнозирования SSWI
Алгоритм линейной регрессии с использованием параметров α, β, γ, δ, ε для прогнозирования SSWI предоставляет набор инструментов для прогнозирования будущих значений SSWI и изменений в нем. Он основан на анализе предыдущих данных о SSWI и состояний параметров α, β, γ, δ, ε. Этот алгоритм может быть полезен для стратегического планирования, контроля процессов и управления системами, которые зависят от синхронизированных взаимодействий в ядрах атомов.
Алгоритм прогнозирования будущих значений SSWI на основе временных рядов:
— Собрать временные данные о значений SSWI, параметров α, β, γ, δ, ε и соответствующих временных метках.
— Построить модель прогнозирования временных рядов, такую как ARIMA, SARIMA, или LSTM нейронную сеть.
— Разделить данные на обучающий и тестовый наборы, используя временные метки для определения точки разделения.
— Обучить модель прогнозирования на обучающей выборке, используя исторические данные SSWI и соответствующие параметры.
— Протестировать производительность модели на тестовом наборе, оценивая точность и остаточные ошибки прогноза.
— Использовать обученную модель для прогнозирования будущих значений SSWI на основе последних или будущих значений параметров α, β, γ, δ, ε.
Алгоритм прогнозирования будущих значений SSWI на основе временных рядов
1. Сбор временных данных:
— Собрать временные данные о значениях SSWI, параметров α, β, γ, δ, ε и соответствующих временных метках.
2. Построение модели прогнозирования временных рядов:
— Выбрать модель прогнозирования временных рядов, такую как ARIMA, SARIMA, LSTM нейронную сеть или другую модель, которая наилучшим образом соответствует характеристикам данных.
— Применить выбранную модель для прогнозирования будущих значений SSWI.
3. Разделение данных:
— Разделить данные на обучающий и тестовый наборы, используя временные метки для определения точки разделения.
4. Обучение модели прогнозирования:
— Обучить модель прогнозирования на обучающем наборе данных, используя исторические значения SSWI и соответствующие параметры α, β, γ, δ, ε.
5. Тестирование производительности модели:
— Протестировать производительность модели на тестовом наборе данных, оценивая точность прогноза и остаточные ошибки прогноза.
6. Прогнозирование будущих значений:
— Используя обученную модель, сделать прогноз будущих значений SSWI на основе последних значений параметров α, β, γ, δ, ε или будущих значений этих параметров.
Таким образом, алгоритм прогнозирования будущих значений SSWI на основе временных рядов позволяет строить модель прогнозирования и использовать ее для прогнозирования будущих значений SSWI на основе исторических данных параметров α, β, γ, δ, ε. Использование данных временных рядов и модели позволяет получить прогнозы, которые могут быть использованы для планирования и управления системами, связанными с синхронизированными взаимодействиями в ядрах атомов.
Код который реализует алгоритм
import pandas as pd
from statsmodels.tsa.arima_model import ARIMA
# Шаг 1: Сбор временных данных
# Загрузка данных временного ряда SSWI
data = pd.read_csv('path/to/data.csv', parse_dates=['timestamp'])
# Шаг 2: Построение модели прогнозирования временных рядов
# Разделение данных на обучающий и тестовый наборы
train_data = data.loc[data['timestamp'] < '2021-01-01']
test_data = data.loc[data['timestamp'] >= '2021-01-01']
# Шаг 4: Обучение модели прогнозирования
model = ARIMA(train_data['SSWI'], order=(1, 1, 1))
model_fit = model.fit()
# Шаг 5: Тестирование производительности модели
predictions = model_fit.predict(start=len(train_data), end=len(data)-1)
# Шаг 6: Прогнозирование будущих значений
future_predictions = model_fit.predict(start=len(data), end=len(data)+10)
print(f"Прогноз на будущие значения SSWI: {future_predictions}")
В этом примере мы используем библиотеку pandas для загрузки данных временного ряда и разделения на обучающий и тестовый наборы. Затем, с помощью библиотеки statsmodels, используется модель ARIMA для обучения исходных данных и прогнозирования значений на основе этой модели.
КОД КОТОРЫЙ РЕАЛИЗУЕТ АЛГОРИТМ
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
# Шаг 1: Сбор временных данных
# Загрузка временных значений SSWI, параметров α, β, γ, δ, ε
data = pd.read_csv('data.csv')
timestamps = data['timestamp']
sswi = data['sswi']
alpha = data['alpha']
beta = data['beta']
gamma = data['gamma']
delta = data [’delta’]
epsilon = data [’epsilon’]
# Шаг 2: Построение модели прогнозирования временных рядов
# Создание модели прогнозирования, например, линейной регрессии
model = LinearRegression ()
# Шаг 3: Разделение данных
# Разделение данных на обучающий и тестовый наборы
X_train, X_test, y_train, y_test = train_test_split(
pd.DataFrame({'alpha': alpha, 'beta': beta, 'gamma': gamma, 'delta': delta, 'epsilon': epsilon}),
sswi,
test_size=0.2,
shuffle=False
)
# Шаг 4: Обучение модели прогнозирования
# Обучение модели на обучающей выборке
model.fit(X_train, y_train)
# Шаг 5: Тестирование производительности модели
# Прогноз на тестовом наборе данных
sswi_pred_test = model.predict(X_test)
# Шаг 6: Прогнозирование будущих значений
# Получение последних значений параметров α, β, γ, δ, ε
last_alpha = alpha.iloc[-1]
last_beta = beta.iloc[-1]
last_gamma = gamma.iloc [-1]
last_delta = delta.iloc[-1]
last_epsilon = epsilon.iloc [-1]
# Создание DataFrame с последними значениями параметров
last_params = pd. DataFrame ({’alpha’: [last_alpha], ’beta’: [last_beta], ’gamma’: [last_gamma],
’delta’: [last_delta], ’epsilon’: [last_epsilon]})
# Прогнозирование будущих значений SSWI
sswi_pred_future = model.predict (last_params)
# Вывод результатов
print («Прогноз на тестовом наборе данных:», sswi_pred_test)
print («Прогноз будущих значений SSWI:», sswi_pred_future)
Код выглядит правильным и имеет логику, соответствующую алгоритму прогнозирования временных рядов на основе параметров α, β, γ, δ, ε. Он использует модель линейной регрессии для прогнозирования значений SSWI на основе указанных параметров.
Однако, стоит отметить, что в этом коде не учитывается характеристика временного ряда. Временные ряды имеют дополнительные свойства, такие как тренды, сезонности и автокорреляция, которые должны быть учтены при выборе модели и метода прогнозирования.
Для более точного прогнозирования временных рядов рекомендуется использовать модели, специально предназначенные для анализа временных рядов, например, ARIMA, SARIMA, LSTM нейронные сети или другие модели временных рядов. Такие модели учитывают структуру временного ряда и могут давать более точные прогнозы.
Также, стоит использовать кросс-валидацию и другие методы оценки производительности модели для более надежного прогнозирования.
Обратите внимание, что вам может потребоваться дополнительная предобработка данных и обработка ошибок в коде, чтобы он полностью соответствовал вашим потребностям и характеристикам данных.
Приведённый ознакомительный фрагмент книги SSWI: алгоритмы и практические примеры. Алгоритмы и коды, практические примеры предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других