Применение элементов искусственного интеллекта в решении прикладных задач

Вадим Николаевич Шмаль

Sergey Pavlov, master Plekhanov Russian University of Economics. Vadim Shmal, Ph. D., associate professor Russian University of Transport (MIIT).

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Применение элементов искусственного интеллекта в решении прикладных задач предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Представление знаний

Представление знаний и инженерия знаний позволяют программам ИИ разумно отвечать на вопросы и делать выводы о фактах реального мира, для чего ранее требовались люди.

Следующим крупным прорывом в технологии знаний, который полностью изменит правила игры для каждой существующей сегодня компании, будет инженерия знаний, особенно с точки зрения представления знаний и инженерии знаний.

Мы должны реалистично оценивать влияние, которое он окажет на большую часть работы, которую выполняют люди. Мы все еще находимся в зачаточном состоянии инженерии знаний, и у ИИ просто не было времени и ресурсов, чтобы улучшить его до такой степени, чтобы мы могли использовать его для решения реальных проблем.

Независимо от того, будет ли ИИ развиваться дальше, инженерия знаний — это область, в которой мы можем извлечь выгоду уже сейчас.

Чтобы ускорить развитие этой области, технологические компании должны быть готовы идти на риск и активно взаимодействовать с экспертами по темам, связанным с инженерией знаний. Сама по себе инженерия знаний уже демонстрирует большой потенциал для улучшения многих существующих приложений ИИ.

Представление знаний и рассуждение — это область искусственного интеллекта (ИИ), предназначенная для представления информации о мире в форме, которую компьютерная система может использовать для решения сложных задач, таких как диагностика состояния здоровья или ведение диалога на естественном языке. Применение ИИ можно найти во многих областях, но прежде всего в областях обработки данных, таких как обработка сигналов от датчиков и обработка результатов поиска и документов при обработке больших данных.

Интеллектуальный анализ данных также стал областью, получившей развитие с появлением больших данных. Интеллектуальный анализ данных — это область, связанная с созданием инструментов, которые собирают, анализируют и организуют информацию в упрощенные представления. После сбора информации ее можно использовать для прогнозирования в области финансов, медицины, химии и многих других областях.

Алгоритмы графов, которые представляют собой инструменты интеллектуального анализа данных, могут использоваться для представления данных в компьютерной системе. Это специализированные инструменты, часто основанные на нейронных сетях, которые хорошо подходят для интеллектуального анализа данных. Графические алгоритмы обычно используются для моделирования данных в виде простых диаграмм или карт, таких как графики данных, показывающих какую-либо информацию. Алгоритмы графов позволяют представлять данные в виде последовательности узлов, каждый узел представляет данные и связи между этими узлами.

Нейронные сети — это особый тип нейронной сети, используемый для выполнения искусственного интеллекта, графовых алгоритмов и машинного обучения. Нейронные сети — это тип машинного обучения, который активно исследуется на протяжении десятилетий. Они очень эффективны в основных вычислительных приложениях и приложениях искусственного интеллекта, особенно при обучении. Нейронные сети делятся на различные типы, такие как долгосрочные, краткосрочные, случайные, линейные и векторные.

Преимущества нейронных сетей хорошо известны. Нейронные сети можно применять для решения множества задач, они гибки и своевременно генерируют результаты. Они применяются для решения различных задач, включая распознавание образов, обнаружение аномалий и машинное обучение. Нейронная сеть — это просто набор узлов и соединений, которые действуют как входы и выходы, чтобы помочь нейронным сетям выполнять сложные задачи и генерировать желаемые результаты.

Современные архитектуры глубокого обучения, которые реализуют нейронные сети, чрезвычайно мощны и эффективны и могут использоваться для эффективного решения проблем с данными, которые было бы трудно решить традиционными методами. Алгоритмы машинного обучения для нейронных сетей разработаны специально для имитации аспектов обработки информации человеческим мозгом, что позволяет нейронным сетям решать сложные задачи.

Системы искусственного интеллекта не ограничиваются задачами обработки данных и могут использоваться для обеспечения лучшего понимания окружающего мира и улучшения определенных аспектов человеческого поведения. ИИ выходит за рамки обработки данных и начинает использовать машинное обучение в реальном мире.

В деловом мире системы ИИ могут помочь повысить производительность и сократить ненужные накладные расходы в таких областях, как управление цепочками поставок и оптимизация поставок, производство, запасы, управление взаимоотношениями с клиентами и контроль качества. Системы искусственного интеллекта можно использовать для создания новых продуктов, обнаружения новых идей и шаблонов, а также для улучшения процесса управления запасами в производственной или сбытовой компании.

В здравоохранении системы искусственного интеллекта можно использовать для анализа огромных объемов данных с медицинских или диагностических изображений для выявления определенных заболеваний и изменений в тканях.

В соответствии с законом системы ИИ могут обеспечивать поддержку принятия решений в области подготовки к судебному разбирательству, объективности, фактов и другой юридической информации. Они могут выявлять потенциальные предубеждения в доказательствах и представлять данные на рассмотрение судов.

Наконец, системы ИИ могут помочь в различных отраслях с производством и логистикой. Системы искусственного интеллекта могут помочь сократить объем запасов на заводе или использовать беспилотные транспортные средства и машины, чтобы сократить время и усилия, необходимые для доставки грузов.

Текущие приложения ИИ включают ряд проблем в области обработки информации, компьютерного зрения, распознавания речи, распознавания текста, обработки изображений, обработки видео, обработки звука, машинного обучения. Многие из лежащих в основе алгоритмов машинного обучения разрабатывались десятилетиями, и сейчас многие системы достигли своих пределов.

ИИ начинает достигать предела производительности технологии в определенных задачах и переходит в новые и более сложные области.

Из-за разнообразия приложений пройдет несколько лет, прежде чем системы ИИ полностью раскроют свой потенциал. В деловом мире системы искусственного интеллекта могут повысить эффективность и скорость компании, а также сократить или устранить ненужные расходы за счет анализа данных и разработки новых процессов для создания новых продуктов.

Система ИИ может использовать информацию, которая была предоставлена системе, чтобы определить, должна ли она делать прогноз относительно результата конкретного решения. Например, система ИИ может понять, что было принято определенное решение на основе информации, предоставленной пользователем. Затем он может определить, является ли прогноз, предоставленный пользователем, точным. Если прогноз, который делает система ИИ, точен, она может сократить время обработки и повысить точность принятия решений.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Применение элементов искусственного интеллекта в решении прикладных задач предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я