Строительство нефтяных и газовых скважин

А. С. Новиков, 2021

Бурение скважин в первую очередь глубоких и сверхглубоких параметрических, поисковых, разведочных и эксплуатационных (добычных) на нефть и газ. Целью данной работы является краткое освещение применяемой современной техники и технологии строительства скважин. Рассмотрены: обработка скважин соляной кислотой, термокислотные обработки и кислотные обработки терригенных коллекторов. Рассмотрено пенно-полимерное заводнение и внутрипластовое горение. Приведен общий обзор колтюбинговых технологий и особенности колтюбинга (ГНКТ) и перфорации скважин. Данная работа будет полезна студентам специальности бурение, полевым инженерам по бурению, работникам буровых компаний.

Оглавление

Глава 1. Введение

§ 1. Общие сведения о бурении нефтяных и газовых скважин

Автор, имеющий опыт бурения скважин, в разных горно-геологических и климатических условиях: (Волгоградская область, Коми — Усинское месторождение, Ямал — сверхглубокая СГ-7 Ен-Яхинская, Таймыр-Северо-Соленинское газовое месторождение, Западный Казахстан — Тенгизское нефтяное месторождение, сервисные компании по интегрированным поставкам долот, супервайзинг строительства скважин), попытался обобщить наработанный опыт и изложить материалы более менее скомпонованном виде. Данная книга является переработанный и является улучшенным вариантом аналогичной книги, в связи с усложнением работ по освоению скважин, применением сложных технологий и техники, в книгу включен раздел, посвященный освоению скважин. Тема каждой из глав является сложной инженерной задачей, каждой теме посвящено огромное количество работ и исследований. Целью данной работы является краткое освещение современной техники и технологии строительства скважин. В работе нет расчетов, существующие программные комплексы позволяют оптимизировать эту проблему и акцентировать внимание и усилия на понимание буровых процессов, знание бурового и технологического оборудования и правильной организации работ по строительству скважин.

Строительство скважин в комплексе работ по разведке и добыче нефти и газа, является одним из важнейших видов работ в добыче нефти и газа и является ремеслом в высшем понимании этого слова. Это прямой метод разведки (в отличие от косвенных, космических съемок, гравиаразведки, сейсморазведки и др.). Единственным способом транспортировки пластового флюида на дневную поверхность, за исключением разработки, неглубоко залегающих залежей нефти, где добыча ведется шахтным способом, является скважина.

Глубокие структурные изменения в области строительства скважин в России, произошедшие в последние 2 десятилетия, не смогли не повлиять положительно, как на скорости бурения, так и на качество строительства скважин. На смену работы под ключ буровым организациям, пришли сервисные подрядчики, которые узко специализируются и используют в работе новейшие западные технологии, буровые установки, оборудование и материалы. В начале века бурение нефтяных скважин было сравнительно простым процессом, выполнялось при помощи относительно несложного оборудования и технологий. Но в дальнейшем, по мере роста глубин скважин, усложнения геолого-технических условий, разрабатываемых месторождений, требованиям к назначению и видам скважин, бурение скважин значительно усложнилось и успех бурения стал возможным, благодаря значительному техническому прогрессу, достигнутому в области бурового оборудования, инструмента, технологий и т. д. [56]., появились новые:

• Буровые установки;

• Буровое оборудование;

• Разработаны новые типы долот;

• Стали реальными более сложные конструкции и виды скважин;

• Новые типы растворов, химреагентов;

• Телеметрическое сопровождение наклонных и горизонтальных скважин, позволило бурить скважины с большими отходами и сложными профилями;

• Разработано и применяется программное обеспечение технологических процессов строительства скважин;

• Практически все процессы контролируются станциями геотехнического контроля;

• Применяется удаленный мониторинг строительства скважин.

• Осуществляется супервайзерский контроль (руководство) за строительством скважин.

Учитывая то, что на суше проведена глобальная разведка углеводородов и ведется интенсивная добыча, большинство месторождений истощены, большой интерес, с точки зрения запасов углеводородов, представляет шельф Мирового океана. Почти весь российский шельф располагается в холодных морях Северного Ледовитого океана и Охотского моря. Его протяженность у берегов России составляет 21 % всего шельфа Мирового океана. Около 70 % его площади перспективны с точки зрения полезных ископаемых, в первую очередь нефти и газа.

На шельфе содержится четверть наших запасов нефти и половина запасов газа. Распределены они следующим образом:

• Баренцево море — 49 %;

• Карское — 35 %;

• Охотское — 15 %.

И лишь менее 1 % находится в Балтийском море и на нашем участке Каспия.

Разведанные запасы на шельфе Северного Ледовитого океана составляют 25 % мировых запасов углеводородного сырья. Поэтому актуальность развития морского бурения очевидна, которое в настоящее время является очень сложной инженерной и дорогостоящей задачей. [44]

Учитывая тот факт, что в России производство морских установок и подводного оборудования устья скважин для бурения и добычи углеводородов, не производится, то очевидно произойдет возврат к старым месторождениям, где коэффициент извлечения нефти очень мал и составляет по России в 2014 г., по разным источникам от 0,28 до 0,372.

В настоящее время добыча и потребление нефти в мире неуклонно растет, динамика показана на графике рис. 1.1. [24]

Рис. 1.1. Прогноз мирового спроса на нефть.

Из графика, представленного на рис. 1.2. видно, что затраты на непосредственно бурение превышают все остальные значительно, и затраты растут, всвязи с усложнением технологий строительства, увеличения глубин скважин.

Рис. 1.2. Распределение объемов капиталовложений при строительстве скважин в России

С учетом того, что на суше существующие запасы на сегодняшний день ограничены, нефтяные и газовые компании предполагают перспективной вести добычу на шельфе Арктики.

Добыча углеводородов в Арктическом шельфе может оказаться дорогой и альтернативой может стать добыча сланцевых углеводородов.

Запасов сланцевой нефти в мире по сравнению с запасами традиционной нефти несоизмеримо больше, но отсутствие в России в настоящее время эффективных технологий разработки, сдерживают их добычу. Богатейшие в мире запасы сланцевой нефти находятся в России (месторождения Баженовская свита и Ачимовская свита в западной Сибири).

Распределение самых больших в мире запасов сланцевой нефти (по состоянию на 2013 год) представлено в таблице 1.

Таблица 1

Огромные запасы нефтяных сланцев разведаны во многих странах мира, и их разработка может совершенно изменить мировую карту добычи энергоносителей.

Когда добыча сланцевой нефти ведётся в промышленном масштабе, для гидравлического разрыва в скважину закачиваются миллионы тонн водного раствора химикатов. Этот раствор содержит огромное количество опасных для человека веществ (до 700 наименований). Там присутствуют:

1. Канцерогены, вызывающие рак;

2. Мутагены, вызывающие непредсказуемые генные мутации;

3. Вещества, вредно действующие на эндокринную систему человека;

4. Вещества, которые организм человека не может вывести естественным путем.

Кроме того, в процессе гидроразрыва, в скважину закачивается огромное количество пресной воды, запасы которой в мире ограничены и немаловажный фактор-себестоимость добычи сланцевой нефти в настоящее время, намного выше добычи традиционной нефти. [109]

Но есть надежда на решение проблемы: Израиль приступил к разработке безводной технологии добычи сланцевой нефти.

В случае успеха (по прогнозу результаты работ будут известны к 2020 году) будут сняты и все экологические ограничения. Новая технология может стать более экономичной, чем традиционная добыча нефти и газа. Тогда будет возможен новый всемирный сланцевый бум.

Существующая тенденция замещения углеводородного сырья на альтернативные источники энергии, ни в коей мере не снизит потребность человечества в углеводородах, а наоборот инициирует развитие нефтехимии, газопереработки, которые позволят создавать новые материалы и вещества. Еще Менделеев Д. И. утверждал, что сжигать нефть, это все равно, что топить ассигнациями.

Все это говорит о том, что профессия инженера буровика не только перестанет быть востребованной, а наоборот, будет престижной. В данной работе проблемы и процессы при строительстве скважин освещены не глубоко, каждой проблеме в строительстве скважин посвящено огромное количество работ и для более глубокого изучения проблем, технологий, оборудования и применяемых материалов, необходимо изучать специальную литературу.

В процессе развития нефтяной и газовой промышленности, опробованы различные виды бурения, а некоторые способы проходят испытания. [96]

1. Вращательный способ, в т. ч.:

Роторный

2. Турбинный способ, в т. ч.:

Забойными двигателями

Электробурение

Винтовыми двигателями

Реактивно турбинное бурение (РТБ)

3. Ударный, в т. ч.:

Ударно канатное

Ударно штанговое

4. Взрывоударный

5. Гидроударный

6. Вибрационный

7. Гидродинамический

8. Химический

9. Лазерный

Наибольшее применение нашло вращательное бурение — 90 % от всего объема проходки в мире.

Потребность страны в нефти и газе, как дешевого источника энергии, заставило увеличивать объемы разведочного и эксплуатационного бурения с расширением географии работ. Это в свою очередь поставило задачи перед наукой, промышленностью и учебными заведениями по совершенствованию процессов, разработкой нового и более совершенного оборудования, подготовке специалистов. Создание новых типов буровых установок, в том числе для бурения на море, винтовых забойных двигателей, управляемых роторных компоновок, новых типов растворов, долот, использование четырехступенчатой системы очистки, совершенствование технологии строительства скважин, смена организации работ при строительстве скважин от генерального подряда на раздельные сервисы с осуществлением супервайзерского контроля с элементами управления работами, различных механизмов уменьшающих ручной труд и повышающих производительность труда в бурении, позволило увеличить глубины бурения, проводить горизонтальные стволы скважин большой протяженности, развивать бурение на шельфе.

Скважиной называется цилиндрическая горная выработка, сооружаемая без доступа человека и имеющая диаметр во много раз меньше ее длины. Начало скважины называется — устьем, цилиндрическая поверхность — стенкой или стволом, дно — забоем. Расстояние между устьем и забоем скважины по ее оси называется глубиной скважины. Глубины нефтяных и газовых скважин изменяются в широких пределах — от нескольких десятков до нескольких тысяч метров: например, спроектированы и закончены бурением сложные, глубокие скважины в различных регионах мира: [97]

1. Аралсорская СГ-1, Прикаспийская низменность, 1962–1971 г.г., глубина — 6,8 км. Поиск нефти и газа;

2. Биикжальская СГ-2, Прикаспийская низменность, 1962–1971 г.г., глубина — 6,2 км. Поиск нефти и газа;

3. Кольская СГ-3, 1970–1994 г.г., глубина — 12 262 м. Проектная глубина — 15 км;

4. Саатлинская, Азербайджан, 1977–1990, глубина — 8 324 м. Проектная глубина — 11 км;

5. Колвинская, Архангельская область, 1961, глубина — 7 057 м;

6. Мурунтауская СГ-10, Узбекистан, 1984 г., глубина — 3 км. Проектная глубина — 7 км. Поиск золота;

7. Тимано-Печорская СГ-5, Северо-Восток России, 1984–1993 г.г., глубина — 6 904 м, проектная глубина — 7 км;

8. Тюменская СГ-6, Западная Сибирь, 1987–1996 г.г., глубина — 7 502 м. Проектная глубина — 7,5 км. Поиск нефти и газа;

9. Ново-Елховская, Татарстан, 1988 г., глубина — 5 881 м;.

10. Воротиловская скважина, Поволжье, 1989–1992 г.г., глубина — 5 374 м. Поиск алмазов, изучение Пучеж-Катункской астроблемы;

11. Криворожская СГ-8, Украина, 1984–1993 г.г., глубина — 5 382 м. Проектная глубина — 12 км, Поиск железистых кварцитов;

12. Уральская СГ-4, Средний Урал. Заложена в 1985 году. Проектная глубина — 15 000 м. Текущая глубина — 6 100 м. Поиск медных руд, изучение строения Урала;

13. Тюменская СГ-6 Западная Сибирь. Проектная глубина — 7 500 м. Текущая глубина — 7520 м. Поиск нефти и газа.

14. Ен-Яхтинская СГ-7, Западная Сибирь. 2000–2005 г.г. Проектная глубина — 7 500 м. Текущая глубина — 8200 м. Поиск нефти и газа.

Скважины на нефть и газ за рубежом

Начала 70-х годов:

• Юниверсити, США, глубина — 8 686 м;

• Бейден-Юнит, США, глубина — 9 159 м;

• Берта-Роджерс, США, глубина — 9 583 м.

Скважины на нефть и газ

Начала 80-х годов

• Цистердорф, Австрия, глубина — 8 553 м;

• Сильян Ринг, Швеция, глубина — 6,8 км;

• Бигхорн, США, Вайоминг, глубина — 7 583 м;

• КТВ Hauptbohrung, Германия, 1990–1994, глубина — 9 100 м. Проектная глубина — 10 км. Научное бурение.

Бурение скважины состоит из четырех основных процессов:

• Разрушение горной породы на забое;

• Удаление разрушенной породы с забоя через устье скважины на поверхность;

• Закрепление неустойчивых стенок скважины.

• Разобщение пластов.

Строительство скважины состоит из семи этапов:

• Подготовительные работы к монтажу (земляные работы, завоз оборудования);

• Монтаж буровой установки;

• Бурение;

• Крепление;

• Испытание;

• Демонтаж оборудования;

• Рекультивация земельного участка.

В настоящее время строительство скважин на нефть и газ значительно усложнилось, истощение легко извлекаемых запасов нефти и газа на малых глубинах, на территориально доступных месторождениях, заставило искать нестандартные более сложные задачи: это бурение горизонтальных скважин, бурение многозабойных скважин, увеличение глубин скважин, использование сложного оборудования для заканчивания скважин и др.

Существует два промышленных способа бурения скважин на нефть и газ: ударный и вращательный. При ударном бурении порода разрушается ударами специального инструмента — долота, которое спускают в скважину на стальном канате или на штангах. Разрушенная порода, смешиваясь с находящейся на забое водой, образует буровую грязь. Эту грязь периодически удаляют с забоя специальной желонкой, после чего обсадную колонну специальной «бабой» забивают на глубину выбранной породы.

Недостатком этого способа является:

• Низкая скорость бурения;

• Большая вероятность нефтегазопроявления.

Достоинство способа:

• Очень высокое качество вскрытия продуктивного горизонта.

Поэтому он нашел широкое применение при бурении водозаборных скважин с аномально низким пластовым давлением.

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я