Open Longevity. Как устроено старение и что с этим делать

Артем Благодатский, 2022

Книга называется Open Longevity – Открытое долголетие. Мы описали здесь несколько важных направлений в исследованиях и борьбе со старением и рассказали в конце о наших проектах. Рассказ идет о таких важных причинах старения, как возрастное воспаление, нарушения в работе митохондрий, а также про современные подходы к борьбе с ним. Эту книгу мы считаем пока просто первым томом: говорить о старении можно бесконечно долго!

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Open Longevity. Как устроено старение и что с этим делать предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Воспаление и старение

В этой главе мы рассмотрим хроническое воспаление, связанное со старением. По-английски оно называется inflammaging, от слов inflammation (воспаление) и aging (старение). Можно также называть его возрастным воспалением.

Само понятие «инфламмейджинг» ввел в 2000 году Клаудио Франчески. И сегодня, спустя 20 лет, без упоминания этого феномена не обходится практически ни одна серьезная геронтологическая работа.

Сам Франчески объяснял возрастное воспаление эволюционными процессами: раньше на протяжении миллионов лет активная иммунная система помогала нашим далеким предкам противостоять инфекциям. Современные же люди, помимо иммунитета, имеют мощный арсенал средств для борьбы с патогенами. Развитие медицины позволило существенно продлить нам жизнь. И, по мнению авторов, «благотворное влияние иммунной системы, направленное на нейтрализацию вредных агентов на ранних этапах жизни, становится вредным на поздних этапах, в период, не предусмотренный эволюцией»1.

Дело в том, что иммунитет тоже стареет. В определенный период нашей жизни работа иммунной системы, направленная на обнаружение и устранение угроз, слаженна и упорядоченна. Но с возрастом система расстраивается и начинает не защищать, а медленно и постепенно нас разрушать. Что же делает возрастное воспаление столь системным и неотвратимым? Какова его связь с другими ключевыми механизмами старения?

В этой книге мы много будем говорить о порочных кругах, возникающих в организме на самых разных уровнях. И история про возрастное воспаление здесь будет очень показательной.

Воспаление: что надо помнить

В бытовом смысле каждый из нас представляет, что такое воспаление. Это универсальный ответ на повреждение тканей или действие патогена. Припухлость, покраснение, боль, повышение температуры и нарушение функции — вот пять основных признаков воспаленного органа, которые выделяли еще древние римляне2.

Воспаление — один из самых распространенных патологических синдромов. Цистит, нефрит, отит, дерматит, менингит и еще десятки подобных наименований — все это воспалительные заболевания. Возьмите латинское название любого органа, добавьте к нему суффикс «-ит», и получите соответствующее воспаление. Для чего же нам исходно нужен этот малоприятный и зачастую разрушительный для организма процесс? Каковы его движущие силы?

Главная функция воспаления — локализовать и устранить исходную причину повреждения, удалить умирающие клетки и ткани и инициировать их восстановление.

При воспалении усиливается локальное кровообращение и возникает отек. С повышенным током крови к месту повреждения стекаются клетки иммунной системы. Вместе с жидкостью они проникают в поврежденные ткани и там делают все возможное, чтобы ограничить и уничтожить источник повреждений.

Рассмотрим стадии воспаления и механизмы его возникновения в упрощенной форме на примере кожи (рис. 1).

Рисунок 1. Процесс воспаления.

Рисунок 1, как мы уже говорили, — это упрощенная схема. Ведь тучные клетки продуцируют не только гистамин. Гистамин же вызывает не только расширение сосудов. Но в целом это иллюстрация стандартного воспалительного каскада: в пораженной области есть клетки, которые в состоянии отреагировать (это как раз тучные клетки, базофилы и некоторые другие), рецепторы на их поверхности распознают врага, включают сигнализацию (или, как говорят биологи, активизируются воспалительные сигнальные пути). Затем все те же клетки выделяют наружу регуляторы (медиаторы) воспаления, чтобы призвать специалистов — иммунные клетки3.

Воспаление — это весь процесс, от активации сигнализации до прихода спецслужб. Точнее, до их ухода, ведь необходимо, чтобы воспаление не только началось, но и успешно завершилось.

Чтобы понять, что делает воспаление хроническим, важно знать, как работают те самые воспалительные сигнальные пути и медиаторы воспаления, не они ли портят нам жизнь. Разберем реакцию тучной клетки чуть подробнее (рис. 2). Что именно заставляет ее выбрасывать гистамин и другие цитокины и запускать воспаление?

На поверхности клеток находится множество белков-рецепторов. Часть из них может работать очень специфично и распознавать что-то свое.

Чего только ни находится вокруг клеток, но нас больше всего интересуют PAMP и DAMP. PAMP (pathogen associated molecular patterns) — это обрывки патогенов, например компоненты клеточных стенок бактерий или липополисахариды. А DAMP (damage associated molecular patterns) — это обрывки наших собственных клеток. И для разных DAMP и разных PAMP могут быть разные рецепторы.

Кстати, так как внутри клеток есть множество органелл со своей собственной мембраной (митохондрии, ядро и эндоплазматический ретикулум (ЭПР)), то именно они часто появляются в межклеточном пространстве в случае физического разрушения клеток. Это как раз хороший пример DAMP.

Рецепторы на клетках иммунной системы взаимодействуют со своей мишенью и изменяют конформацию и/или подвергаются химическим модификациям (например, фосфорилированию). Эти изменения запускают цепь последовательных белок-белковых взаимодействий и химических реакций уже по другую сторону клеточной мембраны, в цитоплазме. Подобные цепи молекулярных и биохимических взаимодействий начинаются с рецептора и заканчиваются, как правило, в ядре экспрессией конкретных генов, влияющих на поведение клетки. Все вместе это называется сигнальными каскадами, или сигнальными путями. Примерами таких путей могут быть пути NF-kB, MAPK или FOXO, регулирующие большинство воспалительных процессов.

Активация воспалительных сигнальных путей приводит к тому, что клетки выделяют во внешнюю среду сигнальные молекулы — гистамин и другие цитокины. Они, в свою очередь, улавливаются рецепторами клеток иммунной системы, что приводит к их миграции в очаг воспаления и активации. Так, гранулоциты высвобождают цитоплазматические гранулы с антимикробными веществами и секретируемыми медиаторами воспаления и помогают макрофагам и нейтрофилам заниматься фагоцитозом образующегося клеточного мусора.

Рисунок 2. Пример запуска воспалительной реакции через толл-подобные рецепторы (TLR) и связанные с ними сигнальные пути. TLR (обозначены разным цветом, так как специфичны к разным PAMP и DAMP) связывают PAMP и DAMP на внешней стороне мембраны. Впячивание мембраны и образование пузырька-эндосомы активируют в цитоплазме белки-посредники, передающие сигнал через другие белки-посредники (TRAF6, MAPK) к белкам-факторам транскрипции (NF-kB, AP-1, IRF3), которые, в свою очередь, запускают в ядре экспрессию воспалительных цитокинов и интерферонов, выделяемых клеткой наружу для привлечения и активации клеток иммунной системы3.

В норме локальная активация иммунитета в очаге воспаления приводит к развитию острой его фазы, в ходе которой причина воспаления устраняется. Однако это не всегда так: возможен переход острой фазы воспаления в хроническую, которая может длиться годами. Что, в свою очередь, ведет к длительному повреждению затронутых тканей и их преждевременному старению.

Причины возрастного воспаления

Иногда причина хронического воспаления, годами подтачивающего организм, может быть тривиальной — это скрытая инфекция. Один из классических примеров — нарушения в составе микробиоты полости рта и кишечника: вредные микроорганизмы и продукты их жизнедеятельности проникают в окружающие ткани и систему кровообращения.

Хрестоматийный пример скрытой инфекции — случай с бактерией Helicobacter pylori. Этот одноклеточный организм живет на стенках желудочно-кишечного тракта. Некоторые его штаммы в целом безвредны. Другие же, в случае ослабления иммунитета и по ряду других причин, становятся причиной большинства патологий желудочно-кишечного тракта: гастритов, язв и, в запущенных случаях, даже рака5. Открытие роли Helicobacter pylori в развитии хронического воспаления органов пищеварения произвело настоящую революцию в медицине: при лечении гастритов и язв стали успешно использовать антибиотики, а авторам открытия в 2005 году даже присудили Нобелевскую премию6.

Однако с точки зрения старения куда больший интерес представляет так называемое «стерильное воспаление». Даже люди с самыми здоровыми зубами и пищеварительной системой все равно стареют, процессы хронического воспаления годами протекают в их тканях. Итак, пройдемся по внутренним факторам воспаления, не связанным с инфекциями.

DAMP: основная причина

Основная причина стерильного воспаления — собственный мусор организма, поврежденные компоненты и содержимое клеток и органелл. В норме ненужные клетки утилизируются организмом в процессе программируемой клеточной гибели (апоптоза). Их содержимое аккуратно упаковывается в специальные мембранные цистерны и используется для метаболизма соседних клеток.

Однако не все клетки гибнут путем апоптоза: некоторые в ходе агрессивных взаимодействий с окружающей средой (физические и химические повреждения и т. д.) подвергаются более грубому и бесконтрольному процессу — некрозу. В ходе некроза содержимое клеток попадает в межклеточное пространство и становится объектом внимания иммунной системы, которая в норме с внутренностями клеток не сталкивается. Такой клеточный мусор несет на себе уже упомянутые выше молекулярные метки DAMP — молекулярные паттерны, ассоциированные с повреждением.

DAMP распознаются иммунной системой как сигнал опасности. Это происходит при помощи различных рецепторов. Наиболее значимые из них — это Toll-подобные рецепторы, инфламмасома NLRP3 и рецепторы конечных продуктов гликирования (RAGE). Иммунитет запускает реакции, необходимые для восстановления тканей, в том числе воспалительный ответ по описанному выше механизму. Если повреждений становится много (а с годами они накапливаются), реакция иммунной системы может стать хронической.

Что именно можно найти в запускающем воспаление клеточном мусоре:

— поврежденные компоненты клеток и органелл;

— внеклеточный АТФ (маркер повреждения митохондрий);

— жирные кислоты;

— кристаллы уратов и холестерина;

— церамиды (мембранные липиды, выполняющие сигнальную функцию);

— кардиолипин (компонент внутренней мембраны митохондрий);

— амилоиды (продукты внеклеточной агрегации белков и пептидов);

— сукцинат (компонент цикла Кребса, маркер повреждения митохондрий);

— продукты перекисного окисления липидов;

— конечные продукты гликирования (маркер повреждения тканей при диабете).

Список не исчерпывающий, однако это основные компоненты DAMP.

Как видно, изрядное их количество появляется из поврежденных митохондрий. Это не случайно: митохондрии произошли от бактерий, давным-давно поселившихся в клетках наших далеких предков. По сути дела, митохондрии — это утратившие автономность бактерии7. Поэтому и иммунитет наш по сей день реагирует на попавшие во внеклеточное пространство компоненты митохондрий как на компоненты бактерий.

Свободные радикалы

Фактором номер два, участвующим в развитии воспаления (как стерильного, так и связанного с инфекционными агентами), можно назвать свободные радикалы. В основном это активные формы кислорода (АФК) и азота.

Их главный источник — митохондрии, особенно если они повреждены. И хотя свободнорадикальная теория старения Хармана утратила свою былую актуальность, она модифицировалась во вполне рабочую «теорию оксидативных повреждений»8.

Суть, впрочем, одна: кислород в активной форме — один из самых страшных ядов. Процессы окисления, а это неотъемлемая часть клеточного метаболизма, сравнимы с медленным горением. Организм, по сути, стареет, «сгорая».

Особенно интересно, что АФК участвуют во всех этапах воспалительного ответа. В частности, они — активаторы такого важного для воспаления сигнального пути, как NF-kB.

NF-κB и FOXO — регуляторы воспаления

Как уже было сказано выше, для развития воспалительной реакции клетки должны секретировать медиаторы воспаления. Те же, в свою очередь, синтезируются благодаря активации провоспалительных генов. За работу этих генов отвечают ключевые сигнальные пути.

NF-kB — одна из основных молекул иммунной системы, регулирующая в том числе и воспаление (рис. 3). Главные участники этого сигнального пути — факторы транскрипции семейства NF-kB. Попадая в ядро, они запускают работу генов, связанных с воспалением.

Но для того, чтобы фактор транскрипции попал в ядро, ему необходимо отсоединиться от белка-ингибитора, который ему мешает. За отсоединение ингибитора отвечает ряд специальных ферментов — регуляторных киназ (NEMO, IKKa, IKKb). Их работу активируют рецепторы на клеточной мембране. Или же активные формы кислорода, если таковые образуются в цитоплазме напрямую, минуя рецептор.

Ловушка хронического воспаления, связанного с NF-kB, заключается в том, что работа ряда генов, запускаемых этим сигнальным каскадом, приводит к образованию активных форм кислорода, в свою очередь, активирующих NF-kB. Образуется порочный круг.

Рисунок 3. Упрощенная схема работы сигнального пути NF-kB

Внешний фактор (например, PAMP или DAMP) связывается с рецептором и активирует его (1). Рецептор, в свою очередь, активирует регуляторные киназы (NEMO, IKKa, IKKb). Они также могут быть активированы избытком АФК в цитоплазме (2). Регуляторные киназы фосфорилируют белок-ингибитор (Ikb), связанный с факторами транскрипции (3). После фосфорилирования ингибитор подвергается деградации, а факторы транскрипции (P50, P65) проникают в ядро (4), активируя экспрессию генов-мишеней (медиаторов воспаления) (5) и дополнительно усиливая активацию киназ за счет накопления АФК (6)9.

Другие «стрелочники», регулирующие работу механизмов хронического стерильного воспаления, — транскрипционные факторы семейства FOXO. Эти белки, попадая в ядро, запускают экспрессию генов-антиоксидантов — таких как каталаза и марганцевая супероксиддисмутаза, — устраняющих АФК из цитоплазмы. Таким образом, действие FOXO, в противоположность NF-kB, противовоспалительное. В разных тканях могут быть преимущественно задействованы разные белки семейства.

Активность самих FOXO регулируется инсулиновым рецептором: инсулин приводит к фосфорилированию и деактивации FOXO при помощи очередной регуляторной киназы.

Интересна взаимосвязь воспаления с диетой. Опыты на крысах показали, что уровень инсулина повышается с возрастом при бесконтрольном потреблении пищи, снижаясь при ограничении калорий10. Повышение уровня инсулина с возрастом приводит к деактивации FOXO и накоплению АФК, которые, как рассмотрено выше, запускают порочный круг хронического воспаления через путь NF-kB, направленность действия которого противоположна пути FOXO11.

Рисунок 4. Взаимосвязь работы инсулина и накопления АФК. Инсулин при помощи регуляторных киназ (PIK3, AKT) фосфорилирует белки семейства FOXO, подавляя их активность в ядре. Это приводит к снижению экспрессии генов-антиоксидантов (ферментов каталазы (САТ)) и марганцевой супероксид дисмутазы (MnSOD), что, в свою очередь, вызывает накопление АФК и активацию хронического воспаления по NF-kB пути. Ограничение калорий способно снизить уровень инсулина и замедлить процесс.

1 — инсулин, связываясь с рецептором, фосфорилирует PIK3; 2 — запуск каскада реакций; 3 — фосфорилирование АКТ; 4 — фосфорилированн АКТ фосфорилирует FOXO, подготавливая его к протеолизу; 5 — протеолиз FOXO; 6 — в отсутствие FOXO происходит накопление АФК; (А) FOXO инициирует транскрипцию РНК, кодирующих каталазу (В) и MnSOD (С); (D) каталаза и MnSOD инактивируют АФК11.

Эпигенетика

Что еще общего в старении различных клеток и органов? Падает активность геропротекторных генов (сиртуинов, синтазы оксида азота, антиоксидантов, митохондриальных белков и др.), растет активность генов, ускоряющих старение (связанных с воспалением, активацией ренин-ангиотензин-альдостероновой системы, повышением уровня фибронектина, накоплением коллагена и других). Все это происходит за счет эпигенетических изменений: тех, что не затрагивают генетический код, однако влияют на считывание информации с генов.

Эпигенетические модификации — небольшие молекулярные метки, обычно метильные или ацетильные группы на нуклеотидах ДНК (у человека на остатках цитидина) и на гистонах.

Эпигенетические профили (суммарное расположение всех эпигенетических модификаций) различны для всех тканей и типов клеток и изменяются с возрастом. Возрастные изменения эпигенома настолько явно коррелируют с количеством прожитых лет, что современные биологи оперируют таким понятием, как «эпигенетические часы» — расположение маркерных эпигенетических модификаций в наборе ключевых генов. По ним можно весьма точно определить биологический возраст организма, будь то лабораторная мышь или человек.

Наличие или отсутствие эпигенетических модификаций в конкретных генах напрямую влияет на их экспрессию. Как уже было упомянуто, провоспалительный фактор NF-κB повышает свою активность с возрастом, а факторы FOXO, антиоксидантные и противовоспалительные, напротив, снижают10. Одна из причин — эпигенетическое изменение регуляции соответствующих генов.

Гипоталамус и порочный круг возрастного воспаления

Интересно, что подобные изменения (активация фактора NF-κB) в наибольшей мере затрагивают гипоталамус. Это область в промежуточном мозге, центральный регулятор нейроэндокринной функции мозга и гомеостаза нашего организма12.

Именно его нейроны воспринимают, обрабатывают и реагируют на сигналы от жировой ткани (через лептин), поджелудочной железы (через инсулин) и прочие гормональные стимулы (через грелин, холецистокинин, панкреатический полипептид и другие гормоны), обеспечивая метаболическое и энергетическое равновесие. Он регулирует аппетит и расход энергии, циркадные ритмы, а еще деятельность желез внутренней секреции организма при помощи гипофиза.

Неспроста гипоталамус занимает одно из основных мест в исследованиях, связанных с процессами старения. Знаменитый геронтолог, доктор медицинских наук В. М. Дильман считал «большими биологическими часами» организма именно гипоталамус, о чем подробно рассказал в своем классическом труде 1981 года13. Однако молекулярные механизмы связи гипоталамуса со старением в то время оставались неясны. Связать воедино воспаление, старение и гипоталамус удалось только в 2013 году. И снова ключевую роль сыграл иммунитет: оказалось, что наиболее значимый вклад в развитие воспаления в стареющем мозге вносят клетки микроглии12.

Микроглия — «аварийно-спасательная бригада» мозга. Ее клетки, специальные макрофаги, отвечают за «уборку мусора» в мозге, запуск иммунных реакций, переключение связи между нейронами. Выяснилось, что старение сопровождается активацией уже знакомого нам фактора NF-κB в клетках микроглии. Мы помним о том, что это провоспалительный фактор. Поэтому неудивительно, что этот процесс, в свою очередь, приводит к секреции провоспалительного цитокина — фактора некроза опухолей (ФНО-а). ФНО-а запускает воспаление в нейронах гипоталамуса, приводя в действие тот же сигнальный путь NF-κB. Так запускается знакомый нам порочный круг: воспаление, возникшее в одних клетках, запускает воспаление в других, приводя к постепенному росту его интенсивности.

Нарастающее воспаление влияет на основную функцию гипоталамуса — нейроэндокринную. Каким образом? Факторы воспаления регулируют активность ряда генов, работающих в гипоталамусе (опять эпигенетическое воздействие). В результате снижается выработка одного из гормонов гипоталамуса — гонадолиберина (гонадотропин-рилизинг-гормона, ГнРГ, GnRH). Этот гормон, действуя через гипофиз, стимулирует выработку половых гормонов. Поэтому воспаление в гипоталамусе приводит к снижению уровня половых гормонов. Это, в свою очередь, способствует развитию множественных системных признаков старения уже на уровне всего организма12.

Причины причин и связь с признаками старения

Итак, мы разобрались, что хроническое стерильное воспаление сопровождается и во многом вызывается накоплением «клеточного мусора» (DAMP), повышением уровня активных форм кислорода, изменениями в работе регуляторных сигнальных путей и факторов транскрипции, связанных с воспалением (в первую очередь NF-κB и FOXO).

Однако к накоплению «мусора» и АФК также должно что-то вести. Возможно, его причины в возрастных нарушениях работы:

— жировой ткани;

— ренин-ангиотензин-альдостероновой системы (РААС);

— внеклеточного матрикса;

— митохондрий;

— гипоталамической регуляции;

— адаптивного иммунитета.

Кратко остановимся на каждом пункте из этого списка.

Жировая ткань

Гипоталамус — центральный орган регуляции, обеспечивающий равновесие в нашем обмене веществ. Но в своей работе он опирается на сигналы, поступающие от периферических тканей, в частности от жировой.

Старение сопровождается метаболическими нарушениями (как изменениями в жировой ткани, так и развитием лептинорезистентности, то есть невосприимчивости к подавляющему аппетит гормону лептину, в гипоталамусе). Они вносят существенный вклад в развитие ожирения и связанного с ним хронического воспаления.

РААС

Помимо энергетического равновесия, которое поддерживается взаимно регулирующимися сигналами гипоталамуса и жировой ткани, для поддержания жизнедеятельности любого организма очень важен водно-солевой баланс. Ренин-ангиотензин-альдостероновая система (РААС) — сигнальный путь, отвечающий в организме за регуляцию этого баланса и артериального давления.

РААС — сложная и многокомпонентная система, в ее работу включены и почки, и печень, и эндотелий сосудов, и гипоталамо-гипофизарная система, которая получает сигналы от ангиотензина. Гиперактивность РААС связывают с жесткостью артерий и другими сердечно-сосудистыми заболеваниями14. Нам же РААС интересна благодаря своему вкладу в формирование воспаления. Именно сердечно-сосудистые заболевания сегодня — лидирующая причина смерти в пожилом возрасте в развитых странах и неизменный спутник старения наряду с метаболическим синдромом.

Митохондрии

Митохондрии отвечают за окисление жирных кислот и глюкозы (точнее, пирувата — продукта, образующегося из глюкозы в ходе гликолиза) с образованием энергии в виде АТФ. Однако помимо своей энергетической функции митохондрии выполняют важнейшие сигнальные функции: их метаболиты и образованные при дыхании АФК приводят к эпигенетическим изменениям ядерной ДНК15.

Митохондрии — сенсоры питательных веществ. В том числе — в нейронах гипоталамуса. Процессы деления и слияния митохондрий играют очень важную роль в способности нейронов гипоталамуса контролировать уровень глюкозы и гомеостаз энергии в организме16. Кроме того, митохондрии регулируют метаболизм кальция и запускают процесс апоптоза.

Нарушения в работе митохондрий — важнейшая причина стерильного воспаления в организме17, ключевые источники как DAMP, так и АФК. Намного более подробно мы освещаем эту тему в главе «Митохондрии и старение».

Внеклеточный матрикс

Наш организм состоит не только из клеток. В единый организм массу клеток объединяют компоненты внеклеточного матрикса. Матрикс составляет основу соединительной ткани и обеспечивает механическую поддержку и межклеточную коммуникацию. Основу матрикса формируют гиалуроновая кислота и структурные белки: гликопротеины и протеогликаны. К белкам относятся всем известные коллагены, фибрин, эластин, компоненты базальных мембран (ламины) и другие.

Компоненты матрикса постоянно обновляются: старый матрикс расщепляется группой специальных ферментов (металлопротеиназами матрикса), а новые компоненты синтезируются специализированными клетками (фибробластами, хондроцитами и др.). Некоторые компоненты матрикса обновляются быстро, но некоторые, например коллаген и эластин, являются долгоживущими. Поэтому логично, что они претерпевают различные химические изменения и накапливают повреждения. Между волокнами коллагена формируются сшивки, что увеличивает жесткость матрикса.

Матрикс — не просто каркас, в котором «сидят» клетки. Клетки механически взаимодействуют с компонентами межклеточного матрикса, таким образом «чувствуют» изменения его жесткости и реагируют на них. Поэтому растущая с возрастом жесткость матрикса влияет на работу клеток, на их способность к адгезии, на дифференцировку, на миграцию стволовых клеток и т. д. Помимо этого, возрастные изменения белков матрикса могут приводить к возникновению воспаления, связываясь со специальными рецепторами RAGE18, 19. Обо всем этом подробнее можно прочитать в главе «Внеклеточный матрикс и старение».

Старение иммунной системы

По уровню сложности организации и выполняемых задач иммунитет можно сравнить с армией и службой внутренней безопасности современного государства: и то и другое призвано распознать и уничтожить врага. И там, и там идет сложный и многостадийный процесс обмена информацией, чтобы отделить «своего» от «чужого» и дать ответ угрозе.

Организм с ослабевающим иммунитетом становится все более подвержен угрозам. Как внешним (например, инфекциям), так и внутренним (например, раку). И, к сожалению, именно иммунная система — одна из наиболее подверженных процессам старения20. Оно затрагивает как кроветворные стволовые клетки, дающие начало всем клеткам иммунной системы, так и отдельные популяции иммунных клеток: Т — и В-лимфоциты, моноциты и макрофаги, дендритные клетки, микроглию. В большинстве случаев стареющие иммунные клетки приобретают провоспалительный фенотип, раскручивая тем самым маховик хронического воспаления20. О возможных методах борьбы со старением иммунитета мы поговорим в конце этой книги.

Одна из самых больших возрастных неприятностей — репрессии против здоровых клеток и тканей вместо борьбы с реальной угрозой. Такие нарушения называются аутоиммунными заболеваниями, бо́льшая их часть на данный момент либо не имеет эффективных способов лечения, либо поддается ему с большим трудом и лишь в отдельных случаях21. Возрастная деградация иммунитета приводит к тому, что он не только не справляется со своими прямыми обязанностями, но и способствует повреждению и преждевременному старению22. «Дряхлеющая» иммунная система производит аутоантитела, реагирующие на собственные белки организма. А их наличие — причина многих бед. В первую очередь речь тут все о том же системном хроническом воспалении23. Также при старении иммунитета происходит избыточная активация регуляторных Т-лимфоцитов, которые подавляют активность Т-киллеров, что приводит к раку различных органов23, 24.

Старение в первую очередь затрагивает наиболее продвинутую часть нашей защитной системы — адаптивный иммунитет18. Его задача — распознавать и устранять угрозы, но, в отличие от своего более древнего врожденного собрата, он работает намного точнее.

Для точности необходимы сотни миллиардов Т — и В-лимфоцитов25, каждый из которых несет на своей поверхности множество копий уникального рецептора, распознающего свой антиген.

Антиген — странное название. Буквально: antibody generator — то, в ответ на что организм вырабатывает антитела. «Чужой» — так было бы точнее. Антиген — любое вещество, которое не нравится иммунитету: белки, глико — и липопротеины. Это характерные маркеры определенных видов врагов, вплоть до типа вируса или конкретного типа опухоли26.

Когда антиген попадает в организм и встречается со «своим» лимфоцитом, запускается многостадийный процесс активации иммунной клетки. Вроде многократного подтверждения нескольких кодов доступа. Затем активированный лимфоцит в бешеных темпах размножается, производя армию клонов. Они все специфичны к антигену, к которому был специфичен лимфоцит-прародитель, и способны эффективно и точно бороться с патогенами — носителями этого антигена.

На подготовку адаптивному иммунитету требуется время. И место. Место созревания одного из двух его «войск» — Т-лимфоцитов — тимус. Собственно, оттуда и буква «Т» в их названии. Эту небольшую железу, расположенную в грудине примерно над солнечным сплетением, можно назвать «элитной военной академией». В «академию» незрелые предшественники Т-лимфоцитов попадают из костного мозга и там проходят жесточайший отбор: в итоге не более 5 % новобранцев27 формируют активные ряды бойцов клеточного адаптивного иммунитета. Отбор в том числе необходим, чтобы отбраковать лимфоциты, способные распознавать и атаковать клетки собственного организма.

К сожалению, тимус — один из самых быстро стареющих органов человека. Его «расцвет» приходится на пятнадцатилетний возраст, после чего начинается инволюция, то есть постепенная атрофия, замещение клеток тимуса жировыми клетками-адипоцитами.

Со временем падает и количество новых Т-лимфоцитов, образующихся в организме. У взрослых людей их популяция частично поддерживается за счет размножения уже созревших периферических Т-лимфоцитов.

Но процесс инволюции тимуса необратим, и Т-лимфоцитов становится все меньше и меньше. Деградирующий тимус перестает производить новые, молодые лимфоциты. А те «старички», что сохраняются, вынуждены поддерживать свою численность за счет регулярного деления, в процессе которого подвергаются старению — уже клеточному. Они подходят к пределу Хейфлика[1] (у них укорачиваются теломеры), и происходит целый ряд других возрастных изменений на клеточном уровне. Например, потеря экспрессии важного для работы Т-лимфоцитов корецептора CD28. Подобные «лимфоциты-старички» не могут полноценно выполнять свои функции, зато начинают усиленно выделять сигнальные молекулы-цитокины: интерлейкин-6 и фактор некроза опухолей-альфа (ФНОα, TNFα). Эти молекулы, в свою очередь, стимулируют развитие воспалительной реакции28. Интересно, что подобное ускоренное «старение» Т-лимфоцитов также происходит при ВИЧ-инфекции29, 30.

Вот так. То есть защитные механизмы ослабевают, а те, что остались, постепенно «сходят с ума» и приносят больше вреда, чем пользы.

(Старение и деградация тимуса и адаптивного иммунитета связаны со старением организма в целом. Если взглянуть на процессы, имеющие отношение к старению и возрастным заболеваниям, то можно увидеть, что красной нитью через них проходит один общий, оказывающий огромное влияние фактор — воспаление31.)

Есть ли главная причина?

Так кто же «первая скрипка» в оркестре возрастных изменений и есть ли она? Скорее всего, все эти изменения запускают, активируют и усиливают друг друга, формируя так называемые «порочные круги». Например:

• Инволюция тимуса, клеточное старение Т-лимфоцитов и выделение ими цитокинов — медиаторов воспаления — повышают с возрастом их локальную концентрацию в тканях, увеличивая вероятность возникновения хронического воспаления.

• Возрастная дисфункция жировой ткани, выраженная в ее гипертрофии и развитии инсулинорезистентности, а также активация системы РААС формируют хроническое воспаление и повышение продукции АФК (что опять же усиливает воспаление). Повышенный уровень АФК и активированные компоненты РААС вызывают нарушения в работе внеклеточного матрикса и митохондрий.

• Нарушение работы митохондрий приводит к образованию значительных количеств DAMP, что усиливает стерильное воспаление, и к дальнейшему повышению уровня АФК. При этом снижается количество энергии, и процесс «уборки» в клетках замедляется.

• Нарастающий уровень АФК приводит к дальнейшим повреждениям компонентов клетки, перекисному окислению липидов, окислительному стрессу, гибели нейронов.

• Продукты перекисного окисления липидов стимулируют образование поперечных сшивок белков внеклеточного матрикса.

• Важную роль в этих процессах играет подавление активными компонентами РААС противовоспалительной функции витамина D32.

• Параллельно происходят такие процессы, как укорочение теломер, истощение пула стволовых клеток, нарушение целостности биологических мембран и работы митохондрий. Внутренние процессы в соединительной ткани (накопление поперечных сшивок, старение белков матрикса, их гликирование) и мутации митохондриальной ДНК также вносят свой вклад в развитие старения.

• Факторами риска, ускоряющими нарушения в работе жировой ткани, РААС, внеклеточного матрикса, митохондрий и старение в целом, могут выступать нездоровый образ жизни, воспалительно-инфекционные процессы и загрязнение окружающей среды.

Сочетание вышеперечисленных факторов приводит к нарушению функционирования отдельных органов и систем организма. Это приводит к развитию сердечно-сосудистых, метаболических и нейродегенеративных патологий, саркопении, остеопорозу и онкологическим заболеваниям. Риск смертности экспоненциально увеличивается с возрастом33. Это и составляет саму основу старения.

Возрастные заболевания, связанные с воспалением

Возрастное воспаление сегодня считается общей и, возможно, главной особенностью старения тканей и одной из основных причин большинства возрастных заболеваний.

С хроническим воспалением слабой степени связаны многие причины смерти в старости: сердечно-сосудистые, онкологические и нейродегенеративные патологии34 (рис. 5).

Рисунок 5. Возрастное воспаление и связанные с ним заболевания

Есть ли выход?

Стоит помнить, что есть и процессы, которые стабилизируют работу системы. Хороший пример — регуляция воспаления при помощи сравнительно недавно описанных в качестве биорегуляторов микроРНК.

МикроРНК — короткие одноцепочечные молекулы рибонуклеиновых кислот, которые не кодируют белки, зато способны комплементарно взаимодействовать с кодирующими их матричными РНК. Они синтезируются в ответ на активацию какого-либо процесса, например воспаления35.

За счет принципа комплементарности достигается высокая избирательность: у каждой микроРНК лишь одна или небольшое количество мишеней. Связываясь с ними, микроРНК подавляют экспрессию соответствующих генов на уровне трансляции, останавливая тот процесс, развитие которого вызвало их синтез. Рассмотрим кратко саморегуляцию воспалительных процессов при помощи микроРНК как противовоспалительный и замедляющий старение механизм, заложенный в нас самой природой.

miR-21 — одна из микроРНК, играющая важную роль как в воспалении, так и в регуляции метаболизма. Синтез miR-21 запускают макрофаги в ответ на активацию уже известного нам провоспалительного сигнального пути NF-κB и ряда других провоспалительных путей. Эта микроРНК замедляет воспалительные процессы, взаимодействуя с мРНК провоспалительных белков PTEN и PDCD4 и снижая уровень их экспрессии. Это приводит к нарушению передачи сигналов в молекулярном каскаде NF-κB и увеличению выработки противовоспалительного интерлейкина-1036.

Это лишь один из многочисленных примеров использования организмом микроРНК для регуляции воспаления. Есть десятки подобных примеров, как и десятки микроРНК, имеющих, наоборот, провоспалительную активность.

Приведенный пример показывает, что для любого связанного со старением процесса саморегуляция это «живая вода», стабилизирующая систему и продлевающая срок ее жизни.

Большинство существующих сегодня теорий старения носит ограниченный фрагментарный характер, описывая какой-то отдельный фактор и выделяя его как главный37, 38. Такое положение вещей, конечно, сильно затрудняет борьбу со старением и нередко заводит в тупик. Хорошая теория старения должна быть непротиворечивой и по максимуму описывать все известные на сегодня процессы, связанные со старением.

Мы предлагаем рассматривать старение как сложный «клубок» взаимосвязанных биологических процессов, при нарушении любого из которых остальные также ломаются. Таким образом, каждый из причастных к старению факторов и все они разом — «главные» причины старения.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Open Longevity. Как устроено старение и что с этим делать предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Примечания

1

Предел Хейфлика — граница количества делений клетки.

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я