Физика пространства

Анатолий Трутнев

На основании смоделированной системы в книге представлен новый взгляд на физические процессы, явления, закономерности. Его новизна в том, что они рассматриваются одновременно с позиции материи и пространства. Система не противоречит законам физики, а углубляет понятие механизмов их действия, даёт определенные ответы на вопросы, неясности, сомнения, существующие в современной физике. Как всё новое, она содержит спорные положения, истинность или ложность которых будет установлена со временем.

Оглавление

  • Предисловие
  • Часть I.. Физические свойства пространства и материи при их взаимодействии и взаимосвязи

* * *

Приведённый ознакомительный фрагмент книги Физика пространства предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Часть I.

Физические свойства пространства и материи при их взаимодействии и взаимосвязи

Глава 1.

Система моделирования взаимодействия материи и пространства

1.1. Принципы моделирования взаимодействия материи и пространства

Физические реалии окружающего нас мира (R) можно описать простой формулой:

R = W + P, где

W — материя;

P — пространство;

Т — время форма взаимодействия материи и пространства;

Е — энергия форма взаимосвязи материи и пространств.

Обе эти компоненты равнозначны, взаимосвязаны и взаимодействуют друг с другом.

Их нельзя сложить, их нельзя разделить, их надо рассматривать, как равнозначные части единого процесса, хотя наука в основном изучает материальную часть этого процесса.

По мнению автора, это связано с тем, что материю можно измерить, взвесить, расплавить, охладить, увидеть, придать ей движение и т. д.

Пространство, как правило, представляется как темная пустота, в которой протекают всевозможные процессы, события, явления.

Попытки осмыслить взаимосвязь материи и пространства предпринимались многими исследователями, но до настоящего времени в этом вопросе много неясностей и сомнений.

Одним из доминирующих камней преткновения здесь является характер взаимодействия между космическими телами, расположенными на значительном удалении друг от друга.

У ученых до сих пор нет единого мнения о природе действия сил тяготения, «близкого» или «дальнего» они действия.

Наибольший вклад в осмыслении данного вопроса внесли Исаак Ньютон и Альберт Энштейн. Первый математически описал закон всемирного тяготения, а второй установил связь между геометрическими характеристиками пространства и физическими свойствами материи. Однако прямого ответа о механизме воздействия одного гравитирующего материального тела на другое материальное тело они не дали.

По мнению автора, исчерпывающие ответы в этом случае можно получить, если рассматривать материю и пространство, как равноправных участников в формировании физических свойств материальных тел, всех процессов, событий и явлений, происходящих в окружающем мире. Для этого смоделируем следующую систему.

Будем рассматривать материю и пространство, как две противоположности, от взаимодействия которых зависят все процессы, происходящие во всех материальных телах, начиная от элементарных частиц и кончая галактиками.

Чтобы глубже понять роль каждой из компонент, разделим материю и пространство до последних неделимых (гипотетических) метрических величин и

обозначим их следующим образом:

g+ — положительно заряженная частица материи (гравитон);

p — — отрицательно заряженная частица пространства (простон).

Гравитон это («горячий») сгусток энергии материи, а простон это («холодный») сгусток энергии пространства Оба сгустка образовались в начальной стадии образования Вселенной.

Частицы равнозначны по величине и обратны по знаку.

Материя в смоделированной системе представляет собой совокупность гравитонов, размещенных определенным образом в пространстве, а пространство — совокупность простонов, размещенных между гравитонами и реально существующих без них.

Наличие заряда у простонов дает право представить организацию пространства в виде силовых линий, состоящих из проетонов, равномерно напряженных во всех направлениях за счет сил отталкивания.

Если поместить гравитоны между силовыми линиями пространства, то в силу их разнородности зарядов, последние будут испытывать деформацию (рис. 1.).

Рис. 1. Схема взаимодействия гравитона (g) с силовыми линиями (S) пространства

Деформация (сближение) силовых линий пространства будет сопровождаться выделением энергии, при этом будет совершаться работа по перемещению гравитона в силовых линиях пространства:

А = Fxd

Согласно второго закона Ньютона F =gха. Следовательно, на гравитон будет действовать сила в направлении движения, придавая ему ускорение.

При этом деформация силовых линий будет увеличиваться, а выделение энергии возрастать. Вместе с тем следует также отметить, что процесс этот будет постоянно замедляться из-за нарастающего сопротивления деформации силовых линий пространства.

В предлагаемой модели взаимодействия материи и пространства все материальные тела представляют собой совокупность гравитонов, размещенных в определенной последовательности в силовых линиях пространства. Именно эти два фактора — организация и размещение материи в силовых линиях пространства и определяют форму и свойства материальных тел, а так же все процессы, протекающие в них, формируют все многообразие реального мира.

В такой смоделированной системе у всех материальных тел будет просматриваться одна общая закономерность. Наибольшей деформации будут подвержены силовые линии, находящиеся в их центральной части (рис. 2).

Рис. 2. Нарастание деформации силовых линий пространства от периферии к центру материального тела.

При этом будет проявляться эффект мнимости, то есть как будто вся масса материального тела сосредоточена в его центре.

Степень деформации силовых линий пространства, окружающего материальное тело эквивалентна массе тела, а ее величина (u) пропорциональна количеству гравитонов, приходящихся на одну силовую линию пространства внутри материального тела и нарастает от периферии к центру.

U=kxS/n, где

U — степень деформации силовых линий пространства, окружающего материальное тело;

k — количество гравитонов в 1 грамме вещества;

n — количество силовых линий пространства в 1 см.

Каждому материальному телу соответствует свое гравитационно-пространственное поле с определенной степенью сжатия силовых линий пространства, окружающих данное тело.

При взаимодействии двух материальных тел их гравитационно-пространственные поля накладываются друг на друга, что происходит при этом с позиции смоделированной системы, представлено на рисунке 3.

Рис. 3. Сближение силовых линий в окружающем материальное тело пространстве в зависимости от массы тела

Пусть масса тела А больше массы тела В, следовательно — Ua> Ub. Поместим по одному гравитону между силовыми линиями пространства, окружающего материальные тела на одинаковом расстоянии (S) от их центров. В гравитационно-пространственном поле тела А силовые линии более деформированы (сближены), чем в гравитационно-пространственном поле тела В, поэтому здесь взаимодействие между гравитоном и силовыми линиями будут более интенсивными, чем в гравитационно-пространственном поле тела В. Здесь будет выделяться больше энергии, в результате чего скорость движения гравитона увеличится..

Ускорение движения гравитона в силовых линиях пространства приведет к появлению дополнительной силы, действующей на гравитон в направлении его движения.

Fдоп. = gxa

a =dS2/dt2

Таким образом, силы воздействия гравитационно-пространственного поля, окружающего материальное тело А будут больше силы воздействия гравитационно-пространственного поля материального поля В и будут составлять:

FA = FB + gxa

Обобщая все вышесказанное, можно сделать следующий вывод:

Чем массивнее материальное тело, тем сильнее воздействие силовых линий окружающего его гравитационно-пространственного поля на движение в них гравитонов. Вектор движения гравитонов в силовых линиях пространства направлен в сторону их большей деформации

Рассмотрим в рамках смоделированной системы механизм взаимодействия двух материальных тел, удаленных на значительное расстояние друг от друга, на примере Земли и Солнца.

Масса Солнца составляет 2х1030 кг, а масса Земли — 6х1024 кг. Расстояние между ними составляет 1,6 х 108 км.

Масса Солнца в 330 тысяч раз больше массы Земли, следовательно ее гравитационно-пространственный потенциал значительно превышает аналогичный потенциал Земли, а это означает, что Солнце в большей степени и на более дальнее расстояние деформирует силовые линии окружающего его пространства, чем Земля.

При взаимодействии Солнца и Земли их гравитационно-пространственные поля накладываются друг на друга. В силу того, что гравитационно-пространственный потенциал Солнца выше, чем у Земли, вектор напряженности их общего поля направлен к центру звезды, но не на всей протяженности разделяющего их пространства (рис. 4).

Рис. 4 Взаимодействие гравитационно-пространственных полей Земли и Солнца;

L — точка Лагранжа, F1S — движущая сила, F3 — поперечная сила.

Точка, где силы деформации силовых линий пространства двух взаимодействующих материальных тел уравновешиваются, носит название точки Лагранжа, в частности для тандема Земля — Солнце она находится на расстоянии 1 миллиона километров от Земли.

Силы, действующие в гравитационно-пространственных полях всех материальных тел универсальны, потому что первоисточником их действия являются взаимодействия положительно заряженных гравитонов с отрицательно заряженными проетонами. Их действия суммируются в одну результирующую силу и в зависимости от направления их действия они усиливают или ослабляют друг друга.

Так в примере гравитационно-пространственного взаимодействия Солнца и Земли они проявляются по-разному.

С освещенной стороны Земли вектор напряженности силовых линий пространства в гравитационно-пространственных полях Земли и Солнца имеют положительное направление и здесь они будут ослаблять друг друга. Их результирующая, хотя и будет направлена к центру Земли. Но по величине она будет значительно уступать результирующей векторов с темной стороны Земли, где они совпадают по направлению.

В итоге в направлении центра Земли действуют две противоположные силы, одна из которых, действующая с теневой стороны, значительно превосходит противоположную (рис. 5).

Рис. 5. Действие движущих сил на земную ось в зависимости

от ориентации к Солнцу поверхности земного шара: а) с освещенной стороны; в) с теневой стороны.

Под действием этой силы Земля падает на Солнце, но из-за наличия у нее поперечной скорости она движется по эллиптической орбите, совершая обороты вокруг Солнца.

В результате вращения Земли ее освещенная и теневая стороны постоянно меняются местами. Плотность же сложения земного шара неравномерна, поэтому движение силы в направлении центра Солнца, которая в основном зависит от массы сосредоточенной на теневой стороне Земли, также постоянно меняется по величине. Вследствие этого движение Земли по орбите происходит хаотично и орбита у нее не замкнута.

1.2 Размеренность пространства

Размеренность пространства в смоделированной системе рассматривается с точки зрения расстояний между ее силовыми линиями. Максимальное ее значение составляет 10—18м. (радиус действия сил слабого взаимодействия). Минимальное — равно размерам гравитона.

Различают следующие виды пространства:

Межгалактические пространства. Расстояния здесь между отдельными галактиками измеряются световыми годами — 1016м и парсеками — 3,26 х 1016м. Векторы напряженности силовых линий пространства направлены к центрам галактик. расстояние между силовыми линиями находится в верхнем пределе (10—18м) и не представляет препятствий для движения по силовым линиям фотонов электромагнитного излучения.

Межзвездные пространства — между отдельными звездами. Вектор напряженности силовых линий пространства направлен к центру галактики. Все остальные параметры аналогичны межгалактическим.

Пространства внутри звездных систем. Это пространства между центральной звездой и планетами, спутниками планет, кометами, астероидами. Расстояние здесь измеряется в километрах (от 105 до 109). Вектор напряженности силовых линий направлен к центру звезды. Остальные параметры аналогичны межзвездным.

Пространства между отдельными макротелами, расположенными на поверхности планеты. Расстояние между ними измеряется в метрах (от 106 до 10—3м). Вектор напряженности силовых линий пространства направлен к центру планеты остальные параметры аналогичны предыдущим.

Пространство между отдельными соединениями веществ, молекулами и атомами. Расстояния между ними измеряются в нанометрах (10—9м), но варьирует в широких пределах и в основном зависит от фазового состояния вещества. В газообразных средах расстояние между молекулами и атомами значительно выше, чем в жидкостях и твердых телах. Такая же зависимость косвенно наблюдается в изменениях расстояний между силовыми линиями пространства в этих средах. Так в газообразных средах фотоны электромагнитных излучений движутся с предельной скоростью света — 3 х 105 км/с. Это говорит о том, что расстояния между силовыми линиями пространства здесь занимают верхний предел (10—18м) и не препятствуют их движению. В то же время при прохождении прозрачных сред, таких, как вода (жидкость) и стекло (твердое тело) скорость электромагнитных излучений уменьшается на величину обратно пропорциональную показателю преломления среды (n):

cI =с/n,где

cI — скорость света в прозрачной среде;

c — скорость света в вакууме;

n — показатель преломления среды.

В свете смоделированной системы снижение скорости света при переходе из газообразной среды (воздух) в оптически более плотные среды (вода, стекло) объясняется уменьшением в них расстояний между силовыми линиями пространства. При этом частота волны не изменяется. А длина волны становится меньше.

Внутриатомное пространство — это пространство заключенное между ядром и электрической оболочкой атома. Силовые линии пространства здесь деформированы. Вектор деформации направлен от электронной оболочки к атомному ядру.

Внутриядерное пространство — пространство, отделяющее друг от друга протоны и нейтроны, составляющие атомное ядро. Силовые линии пространства здесь сильно деформированы, расстояния между ними наименьшее по сравнению с другими видами пространств.

1.3 Энергия пространства

Понятие энергии одно из основных понятий в физике, а закон сохранения энергии — один из важнейших законов природы. Согласно этого закона энергия не возникает, не исчезает, а переходит из одного вида в другой.

Одним из важнейших принципов относительной теории Энштейна является вывод о связи энергии с массой.

Е = mc2

Коэффициентом связи здесь служит квадрат скорости света. Этим Энштейн подчеркнул, что энергия — это не что иное, а движущая масса.

В смоделированной системе в результате движения гравитонов в силовых линиях пространства они деформируются (сближаются), в результате чего выделяется энергия просранства (Ер), затраченное на их растяжение.

Следовательно, можно записать:

Еm = — Ep, где Еm энергия материи;-Ep — энергия пространства.

Энергия покоя гравитона (Ео). она равна Ео = gc2

Энергия покоя простона (-Ео): — Ео = — px0, где x0 — коэффициент связи с пространством.

По условиям моделирования: g = — p,

следовательно gc2= — px0; c2=x0

Рассмотрим механизм перехода энергии из одного вида в другой с позиции взаимодействия материи и пространства на примере с маятником.

Маятник в среде с трением, качнувшись несколько раз, останавливается. Механическая энергия маятника переходит во внутреннюю энергию трущихся тел и их температура повышается. Затем в результате теплообмена внутренняя энергия нагретых тел переходит во внутреннюю энергию частиц, окружающего их пространства с более низкой температурой.

Считается, что этот процесс необратим и необходимость определяется не законом сохранения энергии, а другими неизвестными законами природы.

Использование смоделированной системы в этом случае, убеждает в том, что этот процесс определяется законом сохранения энергии.

Маятник представляет собой совокупность гравитонов, размещенных в определенной последовательности в силовых линиях пространства.

В результате приложенной к нему силы (F) он получает кинетическую энергию (Т) и совершает колебательные движения.

Кинетическая энергия расходуется на ускорение гравитонов маятника в силовых линиях окружающего пространства. В результате чего они деформируются (сближаются) с выделением энергии. Но кинетическая энергия — это энергия материи (движущаяся масса), а выделение энергии — это энергия пространства, что говорит о переходе одного вида энергии в другой.

С ростом энергии в силовых линиях пространства увеличивается частота и амплитуда их колебаний, а это ведет к уменьшению расстояния между ними.

Движущиеся в них гравитоны молекул маятника и воздушной среды, в которой происходит колебательное движение маятника, в результате сближения силовых линий пространства увеличивают скорость своего движения. Увеличение же скорости движения молекул газовой среды и скорости колебаний молекул в кристаллической решетке твердых тел приводит к повышению их температуры.

Следовательно, в данном случае имеет место обратный переход энергии пространства в энергию материи.

Увеличение частоты и амплитуды колебаний силовых линий пространства происходит локально — в межмолекулярное пространство маятника и воздушной среды. После окончания колебательных движений маятника приток дополнительной пространственной энергии в эту область заканчивается Избыток поступающей энергии из этой области переходит в окружающее ее межмолекулярное пространство воздушной среды. Частота и амплитуда колебаний силовых линий пространства выравнивается, а вместе с ней уравниваются скорости движения молекул воздуха и падает скорость колебания молекул в кристаллической решетке маятника. Происходит теплообмен, и температура маятника и воздушной среды выравниваются.

Конец ознакомительного фрагмента.

Оглавление

  • Предисловие
  • Часть I.. Физические свойства пространства и материи при их взаимодействии и взаимосвязи

* * *

Приведённый ознакомительный фрагмент книги Физика пространства предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я