Митохондрии – это маленькие хранительницы клеточной индивидуальности. Именно они во многом определяют, как мы будем жить: ярко и быстро или скучно, но долго. Но митохондрии – лишь один из возможных ключевых элементов эволюции. Для успешного развития биологическим объектам необходимы заложенный в них механизм самоликвидации (чем-то схожий с японским ритуальным самоубийством – сеппуку), постоянный контакт с паразитами и наличие несовершенств. А это всё противоречит целям здоровья отдельного организма. В этом и заключается главный парадокс эволюции: чтобы выжить, нам нужны постоянные препятствия и… жертвы. В формате PDF A4 сохранен издательский макет.
Приведённый ознакомительный фрагмент книги Парадоксы эволюции. Как наличие ресурсов и отсутствие внешних угроз приводит к самоуничтожению вида и что мы можем с этим сделать предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
Глава I. Хитроумные, многоопытные, рукокрылые
Муза, скажи мне о том многоопытном муже, который,
Странствуя долго со дня, как святой Илион им разрушен,
Многих людей города посетил и обычаи видел,
Много и сердцем скорбел на морях, о спасенье заботясь
Жизни своей и возврате в отчизну сопутников; тщетны
Были, однако, заботы, не спас он сопутников: сами
Гибель они на себя навлекли святотатством, безумцы,
Съевши быков Гелиоса, над нами ходящего бога, —
День возврата у них он похитил.
Эпидемия
В один из ясных, но нежарких по местным понятиям полдней, в самом конце ноября 2013 года, шайка детей из гвинейской деревни с красивым названием Мелианду (префектура Гекеду региона Нзерекоре) занималась очень интересным делом: охотилась на мелких, размером с ладонь лолибело, недавно поселившихся в дупле старого дерева рядом с деревней. Днем лолибело спят, укрывшись в самой глубине дупла, где, приловчившись, их можно проткнуть длинной заточенной палкой, после чего прямо на этой палке зажарить на костре. Вкус лолибело в общем-то не самый приятный даже по меркам Западной Африки, но, когда чувство голода практически постоянно, кусочек зажаренного свежего мяса выглядит очень и очень аппетитным. Однако в неумелых руках кусочек мяса может огрызнуться и даже укусить. Похоже, Эмилю Уамуно, самому маленькому из компании ребят, именно так и досталось: укус лолибело оказался довольно болезненным. Эмиль долго плакал от боли и обиды, но старшие ребята угостили своими прожаренными кусочками, чувство мимолетной сытости притупило боль, а потом старшая сестра позвала домой. Небольшая рана плохо заживала, но мало ли ранок и порезов у африканского ребенка в забытой богом деревне? Через несколько дней у Эмиля началась сильная лихорадка, кожа и слизистые стали кровоточить, появился кровавый понос, рвота. 2 декабря 2013 года двухлетний Эмиль Уамуно умер. Еще через несколько дней, испытав похожие мучения, умерли ухаживавшие за ним трехлетняя сестра, мать и бабушка. Затем пришла очередь акушерки, присматривавшей за матерью, которая была беременна очередным ребенком, и похоронных плакальщиц, так как Уамуно принадлежали к уважаемому клану. С плакальщицами и акушеркой болезнь пришла в соседние деревни и начала свой траурный марш по автотрассе от Гекеду на Конакри, столице Гвинеи, вдоль границы со Сьерра-Леоне.
650 километров болезнь преодолела за три месяца, и к марту 2014 года уже бушевала в самом Конакри, перенаселенном двухмиллионном городе, а также легко перетекла в соседние Сьерра-Леоне и Либерию. Чуть позже вспышки страшной геморрагической лихорадки возникли в Нигерии, Конго и Мали, к началу 2015 года отдельные случаи были зарегистрированы в Сенегале, Италии, Великобритании и даже в США. По-настоящему беспрецедентные противоэпидемические мероприятия стали применяться только спустя почти год после первых случаев заболевания. Тысячи добровольцев отправились в Западную и Центральную Африку под эгидой ВОЗ и «Врачей без границ». 8 августа 2014 года ВОЗ объявила геморрагическую лихорадку Эбола угрозой мирового масштаба. 24 сентября президент США Барак Обама, выступая на 69-й сессии Генассамблеи ООН, назвал вспышку Эбола в Западной Африке одной из трех главных угроз для мира, наряду с ИГИЛ и Россией. К середине 2015 года ситуацию, по крайней мере с Эболой, удалось стабилизировать: 9 мая 2015 года Либерия первой из западноафриканских стран заявила о победе над эпидемией, хотя только первая неделя октября 2015 года стала первой неделей, когда не было отмечено ни одного нового случая в исходном ареале инфекции — Гвинее, Сьерра-Леоне и Либерии. По данным ВОЗ (2015), число заболевших геморрагической лихорадкой Эбола за 2014-2015 годы составило 25 575 человек, из них погибло 11 313 человек, летальность составила 44 %.
Довольно быстро выяснилось, что возбудителем заболевания является вариант Макона заирского эболавируса, практически бессимптомно циркулирующего среди африканских летучих мышей, в том числе упомянутых лолибело, имеющих систематическое название ангольского складчатогуба (Mops condylura).
Вообще большинство высоковирулентных для человека и других приматов вариантов эболавирусов имеет естественный резервуар инфекции среди рукокрылых — в нескольких семействах летучих мышей, циркулируя среди них практически бессимптомно.
Предполагая, что значительное число, если не большинство заболеваний не только человека, но и животных имеет инфекционную природу, трудно не задаться вопросом: почему одни и те же инфекционные агенты являются мирными сожителями одних животных и смертельно опасными врагами для других, даже эволюционно близких? Какие различия в физиологии и иммунитете отвечают за невосприимчивость у одних и сверхвысокую чувствительность у других? Пример лихорадки Эбола один из наиболее выразительных, наряду, пожалуй, с чумой и холерой (БОН: глава XIV). Но представляется, что и у большинства инфекционных агентов есть поддерживающие резервуары среди слабо — или вовсе невосприимчивых животных и есть «страдающие» популяции экологически смежных с ними видов. Может ли сама восприимчивость к инфекции нести какую-то иную эволюционную роль, кроме тупикового пути пассивного страдания? Последний вопрос можно задать и в отношении всех болезней — есть ли в них какой-либо скрытый или неочевидный смысл и можно ли их избежать, оставаясь здоровым как можно дольше?
Понимание отношений летучих мышей и вирусов зоонозных заболеваний, особенностей физиологии и иммунитета летучих мышей, причин невероятной для их размеров продолжительности жизни могут стать первым шагом в ответах на поставленные вопросы. ОП!
Почему летучие мыши?
Летучие мыши, точнее рукокрылые, второй по численности видов отряд среди млекопитающих — более 1 300, то есть около 20 % всех видов зверей. Больше видов только у грызунов — около 2 300, играющих, к слову, не менее важную роль в циркуляции многих опасных для человека патогенов. Несмотря на кажущееся внешнее сходство, рукокрылые и грызуны эволюционно довольно далеки: генетически летучие мыши ближе к парнокопытным, хищникам и китообразным, чем к грызунам, более близким, например к приматам. Многообразие видов предполагает и множество стратегий выживания, хотя в большинстве случаев о рукокрылых, как и о грызунах, можно говорить как об общественных мелких хищниках, ведущих скрытный образ жизни (даже вегетарианские виды летучих мышей по сути охотятся на плоды растений, что разительно отличается от неторопливого пастбищного поедания травы копытными).
Общинность летучих мышей иногда имеет экстремальный характер: оценки численности крупнейших колоний близкого родственника ангольского складчатогуба — мексиканского (Tadarida brasiliensis) — достигают невероятной цифры в 35 млн особей (бракенские пещеры неподалеку от Сан-Антонио в Техасе), что называют крупнейшим скоплением млекопитающих на Земле, включая человека (сопоставимую численность людей имеют только городские агломерации Токио-Иокогама и Джакарта). Даже сравнительно мелкие колонии лолибело — ангольского складчатогуба — насчитывают порядка полутысячи особей, что при плотности заселения в дневках нескольких сотен на квадратный метр позволяет им относительно комфортно размещаться для дневного сна в одном или нескольких дуплах больших тропических деревьев, но в то же время становиться легкой добычей после нескольких метких ударов заточенной палкой. Самоуправление подобных колоний рукокрылых без развитого бюрократического аппарата (а они, несомненно, как-то самоуправляются — иначе невозможно решить ни санитарно-гигиенические, ни даже транспортные вопросы: вылет порядка 5 000 особей в секунду из сравнительно узких выходов бракенских пещер без давки и очередей) заслуживает отдельных исследований, но уже сейчас можно сказать, что они очевидным образом будут лить воду на мельницу анархо-синдикализма, заставляя переворачиваться в могилах Пьера Прудона, Петра Кропоткина и Нестора Махно. Вместе с удивительной самоорганизованностью летучие мыши демонстрируют, по крайней мере в части случаев вирусных инфекций, феномен индивидуального перехода на самоизоляцию, если инфекционный процесс отдельной особи выходит из-под контроля (переходит из субклинической формы в клиническую).
Если эпидемиологические аспекты особой «принимаемости» вирусов летучими мышами достаточно ясны: скученность дневок, обилие насекомых-экзопаразитов (потенциальных векторов переноса), осуществление дальних — до сотен километров — миграций, образ жизни в составе сложных экосистем, предполагающий частые межвидовые контакты и, соответственно, возможность межвидовой передачи вирусов, то роль физиологических и иммунологических феноменов у летучих мышей остается активно обсуждаемой. Некоторые черты биологии летучих мышей — большая продолжительность жизни и низкая подверженность опухолевым заболеваниям очевидным образом подтверждают связь этих явлений с особенностями иммунитета, обеспечивающими устойчивость к невероятному числу вирусов. Летучие мыши являются чемпионами среди млекопитающих (а, возможно, и позвоночных) по числу переносимых вирусов в среднем на один вид. В печальном первенстве общего числа переносимых вирусов-возбудителей заболеваний человека и животных (зоонозов) рукокрылые делят чемпионство с грызунами, добившихся аналогичного результата (порядка 60–65 вирусов) за счет максимального среди млекопитающих общего числа видов. К актуальным для человека зоонозам относятся переносимые летучими мышами упомянутые вирус Эбола и близкие филовирусы, все лиссавирусы, включая вирус бешенства (и исключая на данный момент только вирус Мокола), парамиксовирусы и десятки других вирусов, возбудителей опасных инфекций человека и животных. Особого упоминания заслуживают коронавирусы, включая мрачный «вирус десятилетия» — возбудитель тяжелого острого респираторного синдрома-2, трагический символ 2020 года. Почти все вирусы, переносчиками которых являются рукокрылые, относятся к РНК-вирусам. Важным исключением являются несколько гепаднавирусов, возможно, предковых форм вируса гепатита В человека (однако носительства этого вируса у собственно летучих мышей пока не выявлено). Хотя по генетическим механизмам именно гепаднавирусы, как и все параретровирусы, через механизм обратной транскриптазы (то есть переписи РНК в ДНК) очень близки РНК-вирусам. Можно обсуждать, являются ли летучие мыши единственными или одними из основных хозяев этих вирусов, или промежуточными переносчиками, но несомненно, что организм рукокрылых выглядит, как проходной двор для РНК-вирусов; некоторые, похоже, остаются с ними и на всю жизнь.
Чем интересна эволюция летучих мышей?
В программной статье Линь-Фа Вана, Питера Уокера и Лео Пуна (Wang L-F. et al., 2011) были намечены следующие контуры эволюционной взаимосвязи летучих мышей и особо опасных (для других животных) вирусов.
1. Хотя возникновение собственно летучих мышей относится к позднему меловому периоду (около 70 млн лет назад), рождение необыкновенного видового разнообразия у рукокрылых связывают с периодом непосредственно после массового мел-палеогенового вымирания (66 млн лет назад), когда вымерло до 20 % семейств животных, включая практически всех крупных и большинства средних. Во многих сценариях этой катастрофы (внеземной импакт, вулканическая деятельность и т. п.) летучие мыши (и связанные с ними вирусы) получают определенное преимущество перед другими животными благодаря некоторым особенностям своей биологии, например:
• Малые размеры; они позволяют легко находить убежище и обеспечивают меньшую потребность в энергии[1];
• Скрытный образ жизни, по причине которого в начальный момент катастрофы животные могли находиться в укрытии;
• Способность к полету и склонность к миграции, что позволяет сравнительно быстро находить подходящие новые места обитания;
• Жизнь в больших скоплениях, что дает более широкие возможности для спаривания;
• Способность впадать в спячку, что позволяет экономить энергию и выживать при низких температурах;
• Способность к эхолокации, позволяющая быть независимыми от сниженного солнечного освещения;
• Использование насекомых в качестве пищи, что позволяет иметь одну из наиболее стабильных основ питания.
2. Сравнительно благополучное выживание в мел-палеогеновую катастрофу дало летучим мышам возможность сохранить и развить как свои специфические биологические черты, так и свой базовый репертуар вирусов, с которым они в дальнейшем совместно непрерывно эволюционировали в течение последующих 66 млн лет. Большинству других животных, в том числе предкам приматов, пришлось радикально менять образ жизни, проходить (и еще не раз) через «бутылочные горлышки» эволюции, теряя одних и заново обретая новых вирусов-сожителей. Десятки миллионов лет совместной притирки друг к другу позволили определенным вирусам и летучим мышам сформировать свой очень устойчивый способ мирного сосуществования. Разные сценарии мел-палеогеновой катастрофы оказывают предпочтение разным вариантам вирусных стратегий выживания. Так, медленное прогрессирующее вымирание хозяина дает больший шанс вирусам с бóльшим адаптационным потенциалом (таким, как РНК-вирусы), в отличие от стремительного варианта, когда шансы больше у вирусов с широким диапазоном хозяев, когда кто-то из них оказался способным выжить. Изоляция и сокращение популяции вирусного хозяина, формирование эволюционного «бутылочного горлышка» как для хозяина, так и для вируса, ведущее к снижению генетического разнообразия обоих, способствует маловирулентным вирусам с длительной персистенцией в хозяине и способностью к вертикальной передаче. Способность хозяина к миграции и выходу из изоляционного тупика дает предпочтение вирусам со способностью быстрой адаптации к новым хозяевам (РНК-вирусы). В этом свете сочетание особенностей летучих мышей и их преимущественная инфицированность РНК-вирусами становится вполне объяснимой (аналогично сложившаяся взаимная адаптация приматов и герпесвирусов также, очевидно, имеет свое эволюционное объяснение).
3. Те же особенности биологии летучих мышей, которые помогли им пережить мел-палеогеновую катастрофу (в первую очередь — умение летать), а также прямо или косвенно связанные с ними особенности физиологии — и здесь в первую очередь способность быстро менять температуру тела (в состоянии гибернации и при выходе из нее) обеспечили рукокрылым уникальность энергетического метаболизма, недоступную для других животных: с одной стороны, возможность его сверхвысокой мобилизации, с другой — практически полной остановки. Высокий энергетический статус способствует большей вероятности межвидовой передачи вирусов и их быстрому переносу на значительные расстояния, низкий энергетический статус — фиксации состояния персистенции, не реализующейся в острое заболевание.
Что особенного есть в рукокрылых?
Группа Линь-Фа Ван сочла митохондрии летучих мышей ключевыми клеточными элементами, обеспечивающими им способность к полету, уникальное долголетие (и малую приверженность опухолевым заболеваниям) и устойчивость к вирусным инфекциям. Можно отметить, что птицы также могут служить резервуаром множества вирусных инфекций (и также преимущественно вызываемых РНК-вирусами), но они не обладают настолько выраженным сравнительным долголетием. Количество исследований, посвященных раскрытию непосредственных молекулярно-биологических и иммунологических механизмов долголетия и устойчивости к вирусам у рукокрылых в последние годы росло практически экспоненциально. К сожалению, ярких открытий на этом пути было сделано на удивление мало.
Можно надеяться, что коронавирусная пандемия 2020-2021 годов, в происхождение которой летучие мыши также оказались неудивительным образом вовлеченными, даст этим исследованиям дополнительный сверхмощный импульс.
К 2021-му было выявлено, например, что у многих, если не всех летучих мышей отсутствуют гены, относящиеся к распознаванию внеядерной ДНК, что обычно играет важнейшую роль в инициации противовирусного иммунитета у других млекопитающих. Также выявлено отсутствие генов для некоторых рецепторов у так называемых клеток-киллеров. Стало понятно, что основным мотивом реакции летучих мышей на вирусную инфекцию является пассивный, даже супрессивный (тормозящий реакцию) вариант иммунного ответа, в котором специфический иммунитет, реализуемый через специфические антитела и/или Т-клетки, играет сравнительно незначительную роль, несмотря на исходно более высокий репертуар специфических антител (но не специфических Т-рецепторов). Основным двигателем иммунного ответа на вирусную инфекцию является условно пассивный интерферон-опосредованный иммунный ответ, постоянно находящийся у летучих мышей во «включенном» состоянии на фоне «выключенного» специфического активного ответа, опосредуемого провоспалительными цитокинами. Запаздывание интерферон-опосредованного иммунного ответа у человека с последующей сверхактивацией в форме цитокинового шторма (БОН: глава IV) служит предпосылкой тяжелого течения коронавирусной инфекции. Несмотря на частые эпизоды сверхвысокого уровня метаболизма, связанные с полетной активностью, и соответственно, ожидаемых пиков мутагенных свободнорадикальных активных форм кислорода, как наблюдается у других животных, у летучих мышей не найдено. Также не обнаружено нарастания мутаций в митохондриальных генах; напротив, выявлена тенденция к уменьшению генетической вариантности в митохондриях (гетероплазмии), что связывается со сверхэффективным механизмом их удаления или репарации. Важнейшей частью этого механизма служит, например, повышенная экспрессия гена АВСВ1, кодирующего Р-гликопротеин — белок группы АВС-транспортеров, трансмембранных переносчиков различных веществ. Собственно, Р-гликопротеин и считается ответственным за «вынос» из клетки ряда веществ, в том числе лекарств, обладающих мутагенным потенциалом. Низкая генетическая вариативность митохондрий у летучих мышей позволяет успешно реализовываться крайне необходимой функциональной вариативности: на самом деле не все митохондрии даже в одной клетке одинаковые, «штампованные» по одному лекалу. Существуют функциональные субпопуляции митохондрий, различающиеся по локализации, биохимической активности и морфологии. Можно предполагать, что изменение субпопуляционного профиля митохондрий составляет основное содержание многих патологий, в частности метаболических заболеваний (Ngo J. et al., 2021).
У летучих мышей не выявлено достоверно увеличенной экспрессии генов и внеклеточной активности основных антиоксидантных ферментов — супероксиддисмутазы, глутатионпероксидазы, каталазы. Хотя, как в свое время показали исследования автора, более важное функциональное значение имеет внутриклеточная активность антиоксидантных ферментов, определяемая не столько уровнем их экспрессии, сколько формированием и локализацией ферментативных комплексов.
Аутофагия — ключ к разгадке?
Важной находкой можно считать более высокий уровень аутофагии у некоторых видов летучих мышей, причем как базовой, так и индуцированной (Laing E. D., 2019). Аутофагия — процесс внутриклеточного удаления органелл и макромолекул, в первую очередь поврежденных. Этот феномен у летучих мышей, очевидно, в значительной степени относится к удалению разрегулированных оксидативным стрессом митохондрий. Аутофагия может выполнять как функцию «очищения» клетки, так и питания в условиях голодания. Исследования в области аутофагии находятся в мейнстриме современной молекулярной биологии, что особенно подтвердилось присуждением Есинори Осуми Нобелевской премии в 2016 году именно за выдающиеся работы в этой области (единственная в прошедшем десятилетии Нобелевская премия в области физиологии и медицины, присужденная одному человеку).
Аутофагия у летучих мышей очень активно стимулируется вирусами, и после своего запуска активно предотвращает развитие вирусной инфекции, в том числе в отношении других вирусов. Антивирусное действие аутофагии у рукокрылых опосредовано через механизмы врожденного иммунитета, в целом нетипичные для других млекопитающих, то есть оказываясь еще одним вариантом интерференции.
Аутофагия может выступать альтернативой основному виду программируемой клеточной смерти — апоптозу, «стандартному» пути устранения вирус-инфицированных и перерожденных опухолевых клеток (в отношении опухолевых клеток аутофагия может даже выступать усилителем их выживаемости): механизм аутофагии еще оставляет клетке шанс на выживание, а запущенный механизм апоптоза — уже нет. Необходимо отметить, что было бы опрометчиво голодание животного считать универсальным инструментом некоего «очищения» всего организма путем аутофагии, которая все-таки сама по себе отчетливо внутриклеточные явление, но, безусловно, способное дать выраженные положительные проявления и на уровне организма.
У большинства летучих мышей заблокированы или заторможены традиционные для других млекопитающих механизмы неспецифической противовирусной внутриклеточной защиты: упоминавшееся уничтожение свободной внутриклеточной ДНК (сигнальный путь STING), формирование ключевых внутриклеточных инструментов воспаления — инфламмасом (сигнальные пути NLRP3 и PYHIN/AIM), выработка одного из основных медиаторов воспаления при вирусной инфекции — интерлейкина-1-бета (Irving A. T. et al., 2021). Так как значительная доля свободной ДНК относится к митохондриальной ДНК (мтДНК) — важнейшему средству внутри — и межклеточной коммуникации, то заторможенный путь STING предоставляет митохондриону больше функциональной свободы.
Многоопытные и хитроумные
В очень большом обобщении можно констатировать, что стратегия иммунных процессов у летучих мышей подобна стратегии восточных единоборств или пути Одиссея: уход от прямого противодействия, направление силы противника в свою пользу, навязывание своих условий взаимодействия (рис. 1).
Рис. 1. Многоопытные, хитроумные, рукокрылые
Несмотря на выраженную эффективность метаболических и иммунных механизмов летучих мышей, их удивительную «вписываемость» в самые разнообразные экологические ниши, нельзя сказать, что они совершенно безупречны и обеспечивают мышам универсальную невосприимчивость к инфекциям. В последние годы целые многотысячные, если не многомиллионные колонии североамериканских летучих мышей буквально выкашивает эпидемия синдрома «белого носа». Счет жертв идет уже на десятки миллионов, ставя под угрозу выживания целые популяции и даже виды рукокрылых. Возбудителем заболевания является холодолюбивый грибок Pseudogymnoascus destructans, предпочитающий укромные места с температурой от +4 до +20оС. Такие же места предпочитают для зимней спячки летучие мыши. Здоровые мыши обычно несколько раз за время сна просыпаются не более чем на час, при этом их температура повышается. Заразившись, летучие мыши часто и надолго выходят из спячки, начинают беспокойно летать. Такие интенсивные пробуждения ведут к быстрой потере накопленных жировых запасов. Затем на крыльях возникают плохо заживающие рубцы, на мордочках высыпает белый грибковый налет. В большинстве случаев летучая мышь погибает, не дождавшись времени нормального весеннего пробуждения. Важно отметить, что грибок Ps. destructans, ставший причиной североамериканской эпидемии у летучих мышей, имеет европейское происхождение, а сами европейские летучие мыши вполне устойчивы к этой инфекции. Поэтому даже такая продвинутая система защиты от инфекций, комбинирующая механизмы, связанные как с повышенной, так и пониженной температурой, может быть взломана. И даже неудивительно, что взломщиками оказались грибки, одни из самых изощренных паразитов, на счету которых сотни и тысячи исчезнувших с лица Земли видов, включая, возможно, самых исполинских ее хозяев — динозавров (БОН: глава IX).
Касательно же самих летучих мышей, давших нам первую подводку о связях здоровья и эволюции, можно заключить, что биологические особенности летучих мышей, а именно способность к полету, то есть экстремальной физической мобилизации, устойчивость к множеству опасных для других млекопитающих вирусов, невероятно высокая продолжительность жизни, умение впадать в ступор и спячку, не одна, а несколько «нормальных» температур тела в зависимости от физиологического статуса — все эти особенности в значительной, если не определяющей степени вызваны невероятным взаимодействием необыкновенно точно отрегулированных систем энергетического метаболизма и иммунитета. Краеугольным камнем этого взаимодействия являются митохондрии, удивительные двигатели эволюции эукариот (организмов на основе клеток, обладающих ядром, включая все многоклеточные организмы) и гаранты их здоровья.
Библиографический список
1. Крускоп С. В. Летучие мыши: Происхождение, места обитания, тайны образа жизни. — М.: Фитон XXI, 2013.
2. Wang L.-F., Walker P. J., Poon L. L. M. Mass extinctions, biodiversity and mitochondrial function: are bats ‘special’as reservoirs for emerging viruses? (2011). Curr. Opin. Virol.; 1: 649–657.
3. Calisher C. H., Childs J. E., Field H. E., Holmes K. V., Schountz T. (2006). Bats: important reservoir hosts of emerging viruses. Clin. Microbiol. Rev.; 19: 531–545.
4. Luis A. D., Hayman D. T. S., O’Shea T. J., Cryan P. M., Gilbert A. T., Pulliam J. R. C., Mills J. N., Timonin M. E., Willis C. K., Cunningham A. A., Fooks A. R., Rupprecht C. E., Wood J. L., Webb C. T. (2013). A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc Royal Soc B Biol Sci.; 280: 20122753.
5. Mandl J. N., Schneider C., Schneider D. S., Baker M. L. (2018). Going to Bat(s) for Studies of Disease Tolerance. Front. Immunol. 9: 2112.
6. Zhang G., Cowled C., Shi Z., Huang Z., Bishop-Lilly K. A, Fang X., Wynne J. W., Xiong Z., Baker M. L., Zhao W., Tachedjian M., Zhu Y., Zhou P., Jiang X., Ng J., Yang.L, Wu L., Xiao J., Feng Y., Chen Y., Sun X., Zhang Y., Marsh G.A., Crameri G., Broder C. C., Frey K. G., Wang L. F., Wang J. (2013). Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 339: 456–60.
7. Shen Y. Y., Liang L., Zhu Z. H., Zhou W. P., Irwin D. M., Zhang Y. P. (2010). Adaptive evolution of energy metabolism genes and the origin of flight in bats. ProcNatl Acad Sci USA. 107: 8666–71.
8. Ngo J., Osto C., Villalobos F., Shirihai O. S. (2021). Mitochondrial Heterogeneity in Metabolic Diseases. Biology. 10 (9): 927.
9. Laing E. D., Sterling S. L., Weir D. L., Beauregard C. R., Smith I. L., Larsen S. E., Wang L. — F., Snow A. L., Schaefer B. C., Broder C. C. (2019). Enhanced Autophagy Contributes to Reduced Viral Infection in Black Flying Fox Cells. Viruses, 11, 260.
10. Jacquet S., Pons J.-B., De Bernardo A., Ngoubangoye B., Cosset F.-L., Régis C., Etienne L., Pontier D. (2019). Evolution of hepatitis B virus receptor NTCP reveals differential pathogenicity’s and species specificities of hepadnaviruses in primates, rodents, and bats. J Virol. 93: e 01738-18.
11. Subudhi S., Rapin N., Misra V. (2019). Immune System Modulation and Viral Persistence in Bats: Understanding Viral Spillover. Viruses, 11, 192.
12. Koh J., Itahana Y., Mendenhall I. H., Low D., Soh E. X. Y., Guo A. K., Chionh Y. T., Wang L.-F., Itahana K. (2019). ABCB1 protects bat cells from DNA damage induced by genotoxic compounds. Nature Communications 10: 2820.
13. Szentiványi T., Christe P., Glaizot O. (2019). Bat Flies and Their Microparasites: Current Knowledge and Distribution. Front. Vet. Sci. 6: 115.
14. O’Shea T. J., Cryan P. M., Cunningham A. A., Fooks A. R., Hayman D. T. S., Luis A. D., Peel A. J., Plowright R. K., Wood J. L. N. (2014). Bat Flight and Zoonotic Viruses. Emerging Infectious Diseases Vol. 20, No. 5.
15. Munshi-South J., Wilkinson J. S. (2010). Bats and birds: Exceptional longevity despite high metabolic rates. Ageing Research Reviews 9, 12–19.
16. Kuzmin I. V., Bozick B., Guagliardo S. A., Kunkel R., Shak J. R., Tong S., Rupprecht C. E. (2011). Bats, emerging infectious diseases, and the rabies paradigm revisited. Emerging Health Threats Journal, 4: 7159.
17. Caron A., Bourgarel M., Cappelle J., Liégeois F., De Nys H. M., Roger F. (2018). Ebola Virus Maintenance: If Not (Only) Bats, What Else? Viruses, 10, 549.
18. Foley N. M., Hughes G. M., Huang Z., Clarke M., Jebb D., Whelan C. V., Petit E. J., Touzalin F., Farcy O., Jones G., Ransome R. D., Kacprzyk J., O’Connell M. J., Kerth G., Rebelo H., Rodrigues L., Puechmaille S. J., Teeling E.C. (2018). Growing old, yet staying young: The role of telomeres in bats’ exceptional longevity. Sci. Adv.4.
19. Chionh Y. T., Cui J., Koh J., Mendenhall I. H., Ng J. H. J., Low D., Itahana K., Irving A. T., Wang L.-F. (2019). High basal heat-shock protein expression in bats confers resistance to cellular heat/oxidative stress. Cell Stress and Chaperones 24: 835–849.
20. Schountz T., Baker M. L., Butler J., Munster V. (2017). Immunological Control of Viral Infections in Bats and the Emergence of Viruses Highly Pathogenic to Humans. Front. Immunol. 8: 1098.
21. Guy C., Thiagavel J., Mideo N., Ratcliffe J. M. (2019). Phylogeny matters: revisiting ‘a comparison of bats and rodents as reservoirs of zoonotic viruses’. R. Soc. open sci.6: 181182.
22. Jebb D., Foley N. M., Whelan C. V., Touzalin F., Puechmaille S. J., Teeling E. C. (2018). Population level mitogenomics of long-lived bats reveals dynamic heteroplasmy and challenges the Free Radical Theory of Ageing. Nature. Scientific Report 8: 13634.
23. WynneJ.W., Shiell B. J., Marsh G. A., Boyd V., Harper J. A., Heesom K., Monaghan P., Zhou P., Payne J., Klein R., Todd S., Mok L., Green D., Bingham J., Tachedjian M., Baker M. L., Matthews D., Wang L.-F. (2014). Proteomics informed by transcriptomics reveals Hendra virus sensitizes bat cells to TRAIL-mediated apoptosis. Genome Biology 15: 532.
24. Hoelzer M., Schoen M., Wulle J., Mueller M. A., Drosten C., Marz M., Weber F. (2019). Virus and Interferon Alpha-Induced Transcriptomes of Cells from the Microbat Myotis daubentonii. iScience, 27: 647–661.
25. Irving A.T., Ahn M., Goh G., Anderson D. E., Wang L.-F. (2021). Lessons from the host defenses of bats, a unique viral reservoir. Nature. Vol. 589 (7842): 363–370.
Приведённый ознакомительный фрагмент книги Парадоксы эволюции. Как наличие ресурсов и отсутствие внешних угроз приводит к самоуничтожению вида и что мы можем с этим сделать предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других