Понятия со словосочетанием «аналитические решения»
Связанные понятия
Уравнение эйконала (от др.-греч. εἰκών — изображение) — нелинейное дифференциальное уравнение в частных производных, встречающееся в задачах распространения волн, когда волновое уравнение аппроксимируется с помощью квазиклассического приближения.
Геометрическое квантование — метод квантования классических теорий и моделей физических систем, при котором построение квантовых аналогов происходит исходя из геометрии пространств состояний (фазовых пространств) соответствующих классических объектов. Геометрическое квантование возникло из стремления распространить методы квантования простых механических систем на более общие системы и фазовые пространства, а также достижения в теории унитарных представлений. В основе геометрического квантования...
Квантовая статистическая механика – статистическая механика, применяемая к квантовомеханическим системам. Для перехода от классической статистической механики к квантовой предположение классической статистической механики о том, что все допустимые области фазового пространства можно считать равновероятными, заменяется предположением, что все допустимые состояния имеют равные вероятности. Математически это означает, что все интегралы по фазовому пространству заменяются суммами по всем собственным...
Ме́тод обра́тной зада́чи рассе́яния — аналитический метод решения задачи Коши для нелинейных эволюционных уравнений. Основан на связи нелинейного уравнения с данными рассеяния семейства вспомогательных линейных дифференциальных операторов, дающей возможность по эволюции данных рассеяния восстановить эволюцию решения нелинейного уравнения.
Линейно-квадратичный регулятор (англ. Linear quadratic regulator, LQR) — в теории управления один из видов оптимальных регуляторов, использующий квадратичный функционал качества. Задача, в которой динамическая система описывается линейными дифференциальными уравнениями, а показатель качества представляет собой квадратичный функционал, называется задачей линейно-квадратичного управления. Широкое распространение получили линейно-квадратичные регуляторы (LQR) и линейно-квадратичные гауссовы регуляторы...
Интегра́льное уравне́ние — функциональное уравнение, содержащее интегральное преобразование над неизвестной функцией. Если интегральное уравнение содержит также производные от неизвестной функции, то говорят об интегро-дифференциальном уравнении.
Скорость сходимости является основной характеристикой численных методов решения уравнений и оптимизации.
Фундаментальное решение линейного дифференциального оператора L или, эквивалентно, соответствующего ему линейного уравнения в частных производных — математическое понятие, обобщающее идею функции Грина для дифференциальных операторов, без связи с какой-либо областью и граничными условиями.
Эллиптические уравнения — класс дифференциальных уравнений в частных производных, описывающих стационарные процессы.
Подробнее: Эллиптическое уравнение
Система уравнений — это условие, состоящее в одновременном выполнении нескольких уравнений относительно нескольких (или одной) переменных.
Неравенство Боголюбова (квантовая статистическая физика) - неравенство для фурье-образов статистических функций Грина в энергетическом представлении и корреляционных средних. Используется в теории ферромагнетизма, антиферромагнетизма, кристаллических структур для доказательства невозможности фазовых переходов в одно- и двумерных системах.
Метод суперпозиции — метод решения краевой задачи для линейных обыкновенных дифференциальных уравнений путём преобразования в задачу Коши.
Метод разделения переменных — метод решения дифференциальных уравнений, основанный на алгебраическом преобразовании исходного уравнения к равенству двух выражений, зависящих от разных независимых переменных.
Гамильто́нова меха́ника является одной из формулировок классической механики. Предложена в 1833 году Уильямом Гамильтоном. Она возникла из лагранжевой механики, другой формулировки классической механики, введённой Лагранжем в 1788 году. Гамильтонова механика может быть сформулирована без привлечения лагранжевой механики с использованием симплектических многообразий и пуассоновых многообразий.
Краевая задача (граничная задача) — задача о нахождении решения заданного дифференциального уравнения (системы дифференциальных уравнений), удовлетворяющего краевым (граничным) условиям в концах интервала или на границе области. Краевые задачи для гиперболических и параболических уравнений часто называют начально-краевыми или смешанными, потому что в них задаются не только граничные, но и начальные условия.
Критерий Лиувилля — Мордухай-Болтовского — критерий существования решения в обобщенных квадратурах линейного однородного обыкновенного дифференциального уравнения произвольного порядка.
Задача Римана о распаде произвольного разрыва — задача о построении аналитического решения нестационарных уравнений механики сплошных сред, в применении к распаду произвольного разрыва. Полностью решена в ограниченном круге частных случаев — для уравнений газовой динамики идеального газа и некоторых более точных приближений (т. н. газ с двучленным уравнением состояния) и уравнений теории мелкой воды. Решение для уравнений магнитной газовой динамики построимо, по всей видимости, вплоть до необходимости...
Параболические уравнения — класс дифференциальных уравнений в частных производных. Один из видов уравнений, описывающих нестационарные процессы.
Подробнее: Параболическое уравнение
Теория интегрируемых систем — раздел математической физики, изучающий недиссипативные решения дифференциальных уравнений, в том числе уравнений в частных производных. Такие системы имеют соответствующие высшие симметрии.
Теорема об огибающей (англ. envelope theorem) — результат о дифференцируемости целевой функции в оптимизационных задачах с параметром. Теорема гласит, что при варьировании значения параметра, изменение целевой функции (в определённом смысле) не обусловлено изменением оптимума. Теорема важна для сравнительной статики в оптимизационных моделях.
Интерполяция линейных операторов — направление функционального анализа. рассматривающее банаховы пространства как элементы некоторой категории. Общая теория интерполяции линейных операторов была разработана, начиная с 1958 года, в работах С. Г. Крейна, Ж.-Л. Лионса, Ж. Петре. Имеет многочисленные приложения в теории рядов Фурье, в теории приближений, в теории уравнений в частных производных.
Γ-сходимость (
Гамма-сходимость) – концепция сходимости функционалов, возникающая в вариационном исчислении, а также при изучении дифференциальных уравнений в частных производных.
Теорема Хольмгрена — теорема о единственности решения задачи Коши для дифференциального уравнения с частными производными в случае аналитичности коэффициентов дифференциального оператора.
Те́нзор эне́ргии-и́мпульса (ТЭИ) — симметричный тензор второго ранга (валентности), описывающий плотность и поток энергии и импульса полей материи и определяющий взаимодействие этих полей с гравитационным полем.
Сферические функции представляют собой угловую часть семейства ортогональных решений уравнения Лапласа, записанную в сферических координатах. Они широко используются для изучения физических...
Вы́сшая симме́трия (обобщённая симметрия) — одно из фундаментальных понятий раздела математики — группового анализа.
Нелинейная система — динамическая система, в которой протекают процессы, описываемые нелинейными дифференциальными уравнениями.
Теорема Пайерлса — теорема квантовой статистической физики. Сформулирована и доказана Рудольфом Пайерлсом в 1930 году.
Функция Вигнера (функция квазивероятностного распределения Вигнера, распределение Вигнера, распределение Вейля) была введена Вигнером в 1932 году для изучения квантовых поправок к классической статистической механике. Целью было заменить волновую функцию, которая появляется в уравнении Шрёдингера на функцию распределения вероятности в фазовом пространстве. Она была независимо выведена Вейлем в 1931 году как символ матрицы плотности теории представлений в математике. Функция Вигнера применяется в...
Скобка Мояля была введена в 1940 году Хосе Энрике Моялем, но ему удалось опубликовать свою работу только в 1949 году после долгих споров с Полем Дираком.. В то же время эта идея была независимо высказана в 1946 году Хипом Груневолдом в докторской диссертации.
Элементарные функции — функции, которые можно получить с помощью конечного числа арифметических действий и композиций из следующих основных элементарных функций...
Операторная алгебра — алгебра операторов, действующих на топологическом векторном пространстве. Операторные алгебры активно применяются в теории представлений и в дифференциальной геометрии, в квантовой механике и в квантовой статистической физике, в квантовой теории поля и в современной классической механике.
Ве́кторное исчисле́ние — раздел математики, в котором изучаются свойства операций над векторами. В связи с разнообразием особенностей векторов, зависящих от пространства, в котором они исследуются, векторное исчисление подразделяется на...
Математические основы квантовой механики — принятый в квантовой механике способ математического моделирования квантовомеханических явлений, позволяющий вычислять численные значения наблюдаемых в квантовой механике величин. Были созданы Луи де-Бройлем (открытие волн материи), В. Гейзенбергом (создание матричной механики, открытие принципа неопределённости), Э. Шрёдингером (уравнение Шрёдингера), Н. Бором (формулировка принципа дополнительности). Завершил создание математических основ квантовой механики...
Обратная задача — тип задач, часто возникающий во многих разделах науки, когда значения параметров модели должны быть получены из наблюдаемых данных.
Нормальная форма дифференциальных уравнений есть наипростейшая эквивалентная форма исходных уравнений. Нормальная форма получается с помощью специальных замен зависимых и независимых переменных задачи с целью максимального упрощения структуры уравнений. В математике эти замены переменных связаны с инфинитезимальными преобразованиями групп Ли. В физике вопросы, связанные с нормальной формой, получили отражение в теореме Эмми Нётер.
Обобщённый потенциал — понятие классической механики, применяемое для удобного вычисления обобщённых сил, зависящих от обобщённых скоростей.
Интегра́л Пуассо́на — общее название математических формул, выражающих решение краевой задачи или начальной задачи для уравнений с частными производными некоторых типов.
Одноэлектронное приближение — приближенный метод нахождения волновых функций и энергетических состояний квантовой системы со многими электронами.
Гиперболические уравнения — класс дифференциальных уравнений в частных производных. Характеризуются тем, что задача Коши с начальными данными, заданными на нехарактеристической поверхности, однозначно разрешима.
МО ЛКАО (молекулярная орбиталь — линейная комбинация атомных орбиталей) — простейший метод определения волновых функций молекулярных орбиталей. Рассматривает волновые функции молекулярных орбиталей как линейные комбинации волновых функций атомных орбиталей. Для точного определения волновой функции молекулярной орбитали необходимо решить сложную даже для простейших молекул задачу о движении одного электрона в самосогласованном поле, создаваемым атомными ядрами и остальными электронами всех атомов...
Численное решение уравнений и их систем состоит в приближённом определении корней уравнения или системы уравнений и применяется в случаях, когда точный метод решения неизвестен или трудоёмок.
Уравнения совместимости деформаций - математические уравнения, выражающие один из основополагающих принципов механики сплошных сред — принцип совместимости деформаций. Суть последнего состоит в том, что компоненты тензора деформации должны подчиняться уравнениям совместимости, так как, в противном случае, рассматриваемое тело не будет являться сплошной средой. Уравнения совместимости деформаций часто называют тождествами Сен-Венана.