Понятия со словом «линейно»

Локально линейно связное пространство ― топологическое пространство, в котором для любой точки и любой её окрестности имеется меньшая линейно связная окрестность. Другими словами, у каждой точки найдётся база окрестностей, состоящая из линейно связных множеств.
Лине́йно свя́зное простра́нство — это топологическое пространство, в котором любые две точки можно соединить непрерывной кривой.

Связанные понятия

В линейной алгебре линейная зависимость — это свойство, которое может иметь подмножество линейного пространства. При линейной зависимости существует нетривиальная линейная комбинация элементов этого множества, равная нулевому элементу. При отсутствии такой комбинации, то есть, когда коэффициенты единственной такой линейной комбинации равны нулю, множество называется линейно независимым.
Слабая сходимость в функциональном анализе — вид сходимости в топологических векторных пространствах.
Двойственное пространство (иногда сопряжённое пространство) — пространство линейных функционалов на заданном векторном пространстве.
Аффи́нная свя́зность — линейная связность на касательном расслоении многообразия. Координатными выражениями аффинной связности являются символы Кристоффеля.
Гомеоморфи́зм (греч. ὅμοιος — похожий, μορφή — форма) — взаимно однозначное и взаимно непрерывное отображение топологических пространств. Иными словами, это биекция, связывающая топологические структуры двух пространств, поскольку, при непрерывности биекции, образы и прообразы открытых подмножеств являются открытыми множествами, определяющими топологии соответствующих пространств.
Со́бственный ве́ктор — понятие в линейной алгебре, определяемое для произвольного линейного оператора как ненулевой вектор, применение к которому оператора даёт коллинеарный вектор — тот же вектор, умноженный на некоторое скалярное значение. Скаляр, на который умножается собственный вектор под действием оператора, называется собственным числом (или собственным значением) линейного оператора, соответствующим данному собственному вектору. Одним из представлений линейного оператора является квадратная...
Проективная группа — группа преобразований проективного пространства, индуцируемых линейными преобразованиями соответствующего векторного пространства. Её элементы называются проективными преобразованиями — они обобщают проективные преобразования проективной плоскости. С матричной точки зрения проективная группа — это группа всех невырожденных матриц с точностью до скалярных матриц.
Коне́чноме́рное простра́нство — это векторное пространство, в котором имеется конечный базис — порождающая (полная) линейно независимая система векторов. Другими словами, в таком пространстве существует конечная линейно независимая система векторов, линейной комбинацией которых можно представить любой вектор данного пространства.
Вполне упорядоченное множество — линейно упорядоченное множество M такое, что в любом его непустом подмножестве есть минимальный элемент, другими словами, это фундированное множество с линейным порядком.
Интерполяционное пространство — понятие функционального анализа, описывающее свойства банаховых пространств.
Ве́кторное (или лине́йное) простра́нство — математическая структура, которая представляет собой набор элементов, называемых векторами, для которых определены операции сложения друг с другом и умножения на число — скаляр. Эти операции подчинены восьми аксиомам. Скаляры могут быть элементами вещественного, комплексного или любого другого поля чисел. Частным случаем подобного пространства является обычное трехмерное евклидово пространство, векторы которого используются, к примеру, для представления...
В алгебраической геометрии дивизоры являются обобщением подмногообразий некоторого алгебраического многообразия коразмерности 1. Существуют два различных таких обобщения — дивизоры Вейля и дивизоры Картье (названы в честь Андре Вейля и Пьера Картье), эти понятия эквивалентны в случае многообразий (или схем) без особенностей.

Подробнее: Дивизор (алгебраическая геометрия)
Секвенциальная замкнутость — более слабое свойство, чем топологическая замкнутость.

Подробнее: Секвенциальное замыкание
Теорема об обратной функции даёт достаточные условия для существования обратной функции в окрестности точки через производные от самой функции.
Слабая гомотопическая эквивалентность — отображение между топологическими пространствами индуцируещее изоморфизм гомотопических групп.
Касательное пространство Зарисского — конструкция в алгебраической геометрии, позволяющая построить касательное пространство в точке алгебраического многообразия. Эта конструкция использует не методы дифференциальной геометрии, а только методы общей, и, в более конкретных ситуациях, линейной алгебры.
Ковариа́нтность и контравариа́нтность — используемые в математике (линейной алгебре, дифференциальной геометрии, тензорном анализе) и в физике понятия, характеризующие то, как тензоры (скаляры, векторы, операторы, билинейные формы и т. д.) изменяются при преобразованиях базисов в соответствующих пространствах или многообразиях. Контравариантными называют «обычные» компоненты, которые при смене базиса пространства изменяются с помощью преобразования, обратного преобразованию базиса. Ковариантными...
Изоли́рованная то́чка в общей топологии — это такая точка множества, что пересечение некоторой её окрестности с множеством состоит только из этой точки.
Полунорма или преднорма — обобщение понятия норма; в отличие от последней, полунорма может равняться нулю на ненулевых элементах пространства.
Бесконечномерное пространство — векторное пространство c бесконечно большой размерностью.
Риманов тензор кривизны представляет собой стандартный способ выражения кривизны римановых многообразий, а в общем случае — произвольных многообразий аффинной связности, без кручения или с кручением.
Симплектическое многообразие — это многообразие с заданной на нём симплектической формой, то есть замкнутой невырожденной дифференциальной 2-формой.
В математике квадра́тная ма́трица — это матрица, у которой число строк совпадает с числом столбцов, и это число называется порядком матрицы. Любые две квадратные матрицы одинакового порядка можно складывать и умножать.
Топологическое векторное пространство, или топологическое линейное пространство, — векторное пространство, наделённое топологией, относительно которой операции сложения и умножения на число непрерывны.
Нормальные координаты — локальная система координат в окрестности точки риманова многообразия (или, более общо, многообразиая с аффинной связностью) полученная из координат на касательном пространстве в данной точке примененим экспоненциального отображения.
Индекс особой точки векторного поля — математическое понятие, относящееся к дифференциальной топологии, дифференциальной геометрии, теории динамических систем и теории дифференциальных уравнений. Является топологической характеристикой изолированной особой точки векторного поля и определяется как степень гауссова отображения в данной точке.
Локально компактное пространство — топологическое пространство, у каждой точки которого существует открытая окрестность, замыкание которой компактно. Иногда используется более слабое определение: достаточно чтобы каждая точка имела компактную окрестность (открытость окрестности здесь не предполагается). В случае хаусдорфова пространства эти определения эквивалентны.
Метри́ческий те́нзор, или ме́трика, — это симметричное тензорное поле ранга (0,2) на гладком многообразии, посредством которого задаются скалярное произведение векторов в касательном пространстве, длины кривых, углы между кривыми и т. д.
Сингулярные гомологии — теория гомологий, в которой инвариантность и функториальность сразу становятся очевидными, но основное определение требует работы с бесконечномерными пространствами.
Ковариацио́нная ма́трица (или ма́трица ковариа́ций) в теории вероятностей — это матрица, составленная из попарных ковариаций элементов одного или двух случайных векторов.
Двойственная кривая (или дуальная кривая) к заданной кривой на проективной плоскости — это кривая на двойственной проективной плоскости, состоящая из касательных к заданной гладкой кривой. В этом случае кривые называются взаимно двойственными (дуальными). Понятие может быть обобщено для негладких кривых и на многомерное пространство.
Ги́льбертово простра́нство — обобщение евклидова пространства, допускающее бесконечную размерность.
В теории категорий есте́ственное преобразова́ние предоставляет способ перевести один функтор в другой, сохраняя внутреннюю структуру (например, композиции морфизмов). Поэтому естественное преобразование можно понимать как «морфизм функторов». Эта интуиция может быть строго формализована в определении категории функторов. Естественные преобразования — наиболее базовое определение в теории категорий наряду с функторами, поэтому оно появляется в большинстве её приложений.

Подробнее: Естественное преобразование
Связное пространство — непустое топологическое пространство, которое невозможно разбить на два непустых непересекающихся открытых подмножества.
Многоме́рное норма́льное распределе́ние (или многоме́рное га́уссовское распределе́ние) в теории вероятностей — это обобщение одномерного нормального распределения. Случайный вектор, имеющий многомерное нормальное распределение, называется гауссовским вектором.
Касательный вектор — элемент касательного пространства, например элемент касательной прямой к кривой, касательной плоскости к поверхности так далее.
Симплициальный компле́кс, или симплициальное пространство, — топологическое пространство с заданной на нём триангуляцией, то есть, неформально говоря, склеенное из топологических симплексов по определённым правилам.
Диагональная матрица — квадратная матрица, все элементы которой, стоящие вне главной диагонали, равны нулю.
Произво́дная Гато́ расширяет концепцию производной на локально выпуклые топологические векторные пространства. Название дано в честь французского математика Рёнэ́ Гато́ (фр. René Eugène Gâteaux).
Лине́йная комбина́ция — выражение, построенное на множестве элементов путём умножения каждого элемента на коэффициенты с последующим сложением результатов (например, линейной комбинацией x и y будет выражение вида ax + by, где a и b — коэффициенты).
Полупростра́нство, ограниченное гиперплоскостью α, — это геометрическая фигура в пространстве, для которой выполняется следующее...
Окольцованное пространство — топологическое пространство, каждому открытому множеству которого сопоставлено коммутативное кольцо «функций» на этом множестве. Окольцованные пространства, в частности, используются при определении схем.
Потенциальный оператор — математический оператор, отображающий открытое множество вещественного нормированного пространства в сопряжённое пространство и являющийся градиентом некоторого функционала с областью значений в сопряжённом пространстве.
Аффи́нное простра́нство — математический объект (пространство), обобщающий некоторые свойства евклидовой геометрии. В отличие от векторного пространства, аффинное пространство оперирует с объектами не одного, а двух типов: «векторами» и «точками».
Случайное компактное множество — это, по существу, случайная величина со значениями в компактных множествах. Случайные компактные множества используются при изучении аттракторов случайных динамических систем.
Стратифицированное многообразие — множество в топологическом пространстве, являющееся объединенем конечного числа попарно непересекающихся гладких многообразий (называемых стратами) различных размерностей, если при этом замыкание каждого страта состоит из него самого и конечного числа стратов меньших размерностей.
Теорема Витта — теорема о свойствах конечномерных ортогональных пространств над полями произвольного вида. Она утверждает, что любая изометрия между двумя подпространствами конечномерного ортогонального векторного пространства может быть продолжена на все пространство.
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я