Электрон (космический аппарат)

  • «Электро́н» — серия из четырёх советских искусственных спутников Земли, запущенных в 1964 году.

    Цель серии — исследование радиационных поясов Земли и связанных с ними физических явлений. Программа предусматривала исследование частиц радиационных поясов малых и больших энергий, магнитного поля, космических лучей, коротковолнового излучения Солнца, микрометеоритов. Полёты были приурочены к Международному году спокойного Солнца.

    Спутники выводились по два одной ракетой-носителем типа Р-7, при этом один из спутников отделялся ещё на активном участке полёта (он размещался в трубе, расположенной перпендикулярно продольной оси ракеты, и «выстреливался» с помощью порохового двигателя), чтобы обеспечить выход спутников на разные орбиты и, таким образом, обеспечить одновременное наблюдение в двух разных точках. Орбиты были высокоэллиптическими, так что спутники могли исследовать радиационные пояса на всём их протяжении.

    «Электрон-1» и «Электрон-2» были запущены 30 января 1964 года. Параметры орбит: наклонение 61°; для «Э-1» перигей 425 км, апогей 6000 км; для «Э-2» перигей 460 км, апогей 60 000 км. «Э-1» проработал два месяца до 27 марта 1964 года (485 витков), а «Э-2» пять месяцев до 30 июля 1964 года (164 витка). Отказы спутников связаны с нехваткой электропитания из-за деградации солнечных батарей.

    «Электрон-3» и «Электрон-4» были запущены 11 июля 1964 года. Программа полёта и параметры орбит были аналогичны «Э-1» и «Э-2». Конструкции аппаратов были усовершенствованы для экономии электропитания и увеличения ресурса солнечных батарей. «Э-3» работал шесть месяцев до 13 января 1965 года (1594 витка), «Э-4» более восьми месяцев до 23 мая 1965 года (281 виток).

    На основании полученных данных НИИ ядерной физики МГУ составил «Модель космического пространства», позволяющую оценивать радиационную опасность при полётах космических аппаратов и разрабатывать меры радиационной защиты.

Источник: Википедия

Связанные понятия

«Марс» — автоматические межпланетные станции, которые запускались СССР с 1960 по 1973 с целью изучения планеты Марс и околопланетного пространства. Для резервирования и комплексности исследований запускали несколько, серию АМС.
«Венера» — серия советских автоматических межпланетных станций (АМС) для изучения Венеры и космического пространства.
Автоматическая межпланетная станция (АМС) — беспилотный космический аппарат, предназначенный для полёта в межпланетном космическом пространстве (не по геоцентрической орбите) с выполнением различных поставленных задач.
Пионер-6, Пионер-7, Пионер-8, Пионер-9 — однотипные аппараты НАСА серии «Пионер», запущенные в 1965—1969 на околосолнечную орбиту с целью изучения Солнца и межпланетного пространства. Они стали одними из самых долгоживущих космических аппаратов, некоторые из которых проработали свыше 30 лет.
Искусственный спутник Земли (ИСЗ) — космический летательный аппарат, вращающийся вокруг Земли по геоцентрической орбите.

Упоминания в литературе

Для частот, практически применяемых в локационной технике, необходимая электронная концентрация должна быть порядка 1010 – 1012 электронов в кубическом сантиметре. Но с возрастанием концентрации свободных электронов почти по квадратичному закону возрастает и скорость процессов рекомбинации. Поэтому каналы грозового разряда и становятся столь быстро ненаблюдаемыми в радиолокаторах. Установленная длительность радарной видимости для молнии значительно короче одной секунды.
Значительное количество сведений о природе межзвездного газа было получено за последние три десятилетия благодаря весьма эффективному применению радиоастрономических методов. Особенно плодотворными были исследования межзвездного газа на волне 21 см. Что это за волна? Еще в 1940-х годах теоретически было, предсказано, что нейтральные атомы водорода в условиях межзвездного пространства должны излучать спектральную линию с длиной волны 21 см. Дело в том, что основное, самое «глубокое» квантовое состояние атома водорода состоит из двух очень близких уровней. Эти уровни различаются ориентациями магнитных моментов ядра атома водорода (протона) и вращающегося вокруг него электрона. Если моменты ориентированы параллельно, получается один уровень, если антипараллельно – другой. Энергия одного из этих уровней несколько больше другого (на величину, равную удвоенному значению энергии взаимодействия магнитных моментов электрона и протона). Согласно законам квантовой физики, время от времени должны самопроизвольно происходить переходы с уровня большей энергии на уровень меньшей энергии. При этом будет излучаться квант с частотой, пропорциональной разности энергий уровней. Так как последняя в нашем случае очень мала, то и частота излучения будет низкой. Соответствующая длина волны будет равна 21 см.
В наши дни специалисты, похоже, возлагают основные надежды на иные системы. Скажем, в новосибирском Академгородке недавно начал работать самый мощный в мире лазер на свободных электронах. Излучение на выходе может достигать 100 кВт, сообщил один из разработчиков, доктор химических наук Александр Петров, что как минимум в 10 000 раз больше, чем у известных аналогов. Размеры установки вполне соответствуют масштабу проекта: она занимает весь двухэтажный корпус нового Сибирского центра, расположенного в Академгородке.
Из сказанного можно сделать вывод, что для существования Вселенной, галактики и обитаемой планеты необходимы уникальные условия. Регулярные научные наблюдения позволили открыть 26 параметров, которые должны иметь строго определенные значения для существования Вселенной и жизни в ней. Это: постоянная сильного и слабого ядерного взаимодействия, постоянная гравитационного взаимодействия, постоянная электромагнитного взаимодействия; отношение массы нейтрона к массе протона, протона к массе электрона, отношение количества протонов к количеству электронов и ряд других параметров. Они должны иметь строго постоянные значения!
Особый интерес представляют корональные дыры и корональные выбросы. Корональные дыры – это области открытых силовых линий магнитного поля, плазма из которых истекает наружу. Температура в корональной дыре падает ниже миллиона градусов, поэтому (а также из-за понижения плотности) в ультрафиолетовых и рентгеновских лучах такая область короны выглядит более темной (существенно, что корональные дыры часто видны как темные области именно в проекции на солнечный диск). Также корональные дыры хорошо заметны при наблюдениях в некоторых спектральных линиях, формирующихся в короне. Можно сказать, что в периоды низкой солнечной активности обе приполярные области являются гигантскими корональными дырами. В годы высокой активности, когда корона обладает большей сферической симметрией, дыры могут возникать на любых широтах. Истекая из корональных дыр, электроны и ионы формируют быструю компоненту солнечного ветра.

Связанные понятия (продолжение)

Орбита «Молния» — один из типов высокой эллиптической орбиты с наклонением в 63,4°, аргументом перицентра −90° и периодом обращения в половину звёздных суток. Данный тип орбиты получил название по серии советских космических аппаратов «Молния» двойного назначения, впервые использовавших эту орбиту в своей работе.
Сфера (индекс ГУКОС — 11Ф621) — серия первых советских геодезических спутников, запускавшихся в период с 1968 по 1978 год. Предназначались для создания единой системы координат всей поверхности земного шара, установления геодезических связей между континентами и островами, уточнения геофизических параметров Земли.
Исследования Юпитера с близкого расстояния выполнялись при помощи автоматических космических аппаратов. Эти исследования начались с зонда «Пионер-10» (НАСА), пролетевшего через систему Юпитера в 1973 году.
Интергелиозонд — российский проект космического аппарата для исследования Солнца с близкого расстояния и внутренней гелиосферы. Запуск планировался в 2015 году, но впоследствии после секвестра Федеральной космической программы был перенесён за 2025-й год.
Эхо (англ. Echo) — первая программа NASA по созданию спутников связи. Спутники являлись пассивными рефлекторами радиосигнала.
Фото́н — серия специализированных космических аппаратов (спутников), разработанных ЦСКБ-Прогресс и применяющихся для технологических и научных исследований.
Межпланетные космические полёты (межпланетные путешествия) — путешествия между планетами, как правило, в пределах одной планетной системы. В практике человечества понятие космических полетов такого типа означают реальные и гипотетические перелёты между планетами Солнечной системы. Составная часть гипотетических проектов колонизации космоса человечеством.
Ресурс-Ф — серия советских (российских) космических аппаратов ДЗЗ (фотонаблюдения).
Искусственная радиация и полярное сияние (Кергелен — Советский Союз) (англ. Artificial Radiation and Auroral (Kerguelen — Soviet Union), ARAKS, иногда S расшифровывают как Sogra) — советско-французский научный эксперимент, направленный на изучение ионосферы и магнитного поля Земли.

Подробнее: АРАКС (эксперимент)
«Восток» — наименование серии советских космических кораблей, предназначенных для пилотируемых полётов по околоземной орбите. Создавались ведущим конструктором О. Г. Ивановским под руководством генерального конструктора ОКБ-1 С. П. Королёва с 1958 по 1963 год.
Фрам — серия советских (российских) космических аппаратов ДЗЗ (фотонаблюдения). Первые советские «гражданские» спутники ДЗЗ. Использовались в целях проведения многозонального фотографирования поверхности Земли, и для исследования природных ресурсов Земли (ИПРЗ), в частности.
«Око-1» — функционировавшая в 1996—2014 гг. спутниковая система обнаружения пусков межконтинентальных баллистических ракет. Входила в состав космического эшелона системы предупреждения о ракетном нападении. Включала в себя спутники второго поколения Прогноз 71Х6 (УС-КМО — Унифицированная система контроля морей, океанов) на геостационарной орбите.
Метеор-2 — серия советских метеорологических спутников. Представляет собой второе поколение советских метеорологических ИСЗ, улучшенный вариант метеоспутника первого поколения Метеор.
Межпланетная транспортная сеть (англ. interplanetary transport network, ITN, Межпланетный Суперхайвей) — система гравитационно определенных сложных орбит в Солнечной системе, которые требуют небольшого количества топлива. ITN использует точки Лагранжа в качестве точек, в которых возможны низкозатратные переходы между различными орбитами в космическом пространстве. Несмотря на то, что ITN позволяет совершать межпланетные перелеты с небольшими затратами энергии, длительность полетов в десятки и сотни...
Геопереходная орбита (ГПО) — орбита, являющаяся переходной между низкой опорной орбитой (НОО; высота около 200 км) и геостационарной орбитой (ГСО; 35 786 км). В отличие от НОО и ГСО, которые в первом приближении являются круговыми, переходная орбита — это сильно вытянутая эллиптическая траектория движения КА, перигей которой лежит на расстоянии НОО от Земли, а апогей на расстоянии ГСО (орбита Гомана — Ветчинкина).
Иридиум (англ. Iridium) — группировка спутников, используемая для передачи голоса и данных по всей поверхности Земного шара. Спутники находятся на низкой орбите, благодаря чему в качестве клиентского оборудования одноимённой системы связи используются достаточно компактные спутниковые телефоны. Большое количество спутников обеспечивает покрытие всей поверхности земного шара. Владельцем группировки спутников является Iridium Communications, она же занимается производством клиентского оборудования...
Суборбитальный полёт — полёт летательного аппарата по баллистической траектории со скоростью, меньшей первой космической, то есть недостаточной для вывода на орбиту искусственного спутника Земли.
Космическая энергетика — вид альтернативной энергетики, предусматривающий использование энергии Солнца для выработки электроэнергии, с расположением энергетической станции на земной орбите или на Луне.
«Офек» (ивр. ‏אופק‏‎ — «горизонт») — серия спутников, разработанная в Израиле концерном Israeli Aerospace Industries. Относится к разведывательным спутникам. Срок службы предположительно не превышает 1—3 лет. Запуск спутников производится с космодрома Пальмахим в западном направлении, над Средиземным морем, проливом Гибралтар и далее над Атлантикой, чтобы избежать падения отработавших ступеней ракеты-носителя в соседних с Израилем арабских странах.
«Зенит» — тип военных советских (российских) разведывательных космических аппаратов, запущенных в период между 1961 и 1994 годами. Для того чтобы скрыть их характер, все спутники запускали под порядковыми названиями «Космос». За 33-летний период было запущено более пяти сотен «Зенитов», что делает его самым многочисленным типом спутников подобного класса в истории космических полётов.
Под космическим мусором подразумеваются все искусственные объекты и их фрагменты в космосе, которые уже неисправны, не функционируют и никогда более не смогут служить никаким полезным целям, но являющиеся опасным фактором воздействия на функционирующие космические аппараты, особенно пилотируемые. В некоторых случаях, крупные или содержащие на борту опасные (ядерные, токсичные и т. п.) материалы объекты космического мусора могут представлять прямую опасность и для Земли — при их неконтролируемом сходе...

Подробнее: Космический мусор
Геостациона́рная орби́та (ГСО) — круговая орбита, расположенная над экватором Земли (0° широты), находясь на которой, искусственный спутник обращается вокруг планеты с угловой скоростью, равной угловой скорости вращения Земли вокруг оси. В горизонтальной системе координат направление на спутник не изменяется ни по азимуту, ни по высоте над горизонтом — спутник как бы «висит» в небе неподвижно. Поэтому спутниковая антенна, однажды направленная на такой спутник, всё время остаётся направленной на него...
«Меридиан» (индекс ГУКОС — 14Ф112) — серия российских спутников связи двойного назначения, разработанных «Информационные спутниковые системы» имени академика М. Ф. Решетнёва по заказу Министерства обороны России. Запуски космических аппаратов «Меридиан» производятся с космодрома «Плесецк» ракетами-носителями семейства «Союз-2» с разгонным блоком «Фрегат».
Лазерная локация Луны — измерение расстояний между двумя точками на поверхностях Земли и Луны соответственно посредством лазерной локации с использованием уголковых отражателей, находящихся на поверхности Луны, или без них (на ранних этапах исследований). Научное значение таких экспериментов состоит в уточнении гравитационной постоянной и проверке теории относительности; уточнении ряда параметров движения динамической системы Земля — Луна; получении новых данных о физических свойствах и внутреннем...
Вход в атмосферу в космической технике обозначает фазу входа космического аппарата в атмосферу. Из-за аэродинамического сопротивления внешней газовой среды оболочка аппарата, движущегося на большой скорости, нагревается до значительных температур. Если объект должен выдержать вход в атмосферу, ему необходима тепловая, как правило абляционная, защита.
Безракетный космический запуск (англ. Non-rocket spacelaunch, NRS) — космический запуск, или способ выведения на орбиту, при котором некоторая или вся необходимая скорость и высота достигается без помощи традиционных ракет, запускаемых с земной поверхности. Предложено множество альтернатив ракетам. В некоторых системах, таких как ракетные салазки и воздушный старт, ракета участвует в достижении орбиты, но включается после достижения некой начальной высоты или скорости другим способом.
«Метеор» — серия советских метеорологических спутников эксплуатировавшихся в 1960—1970-х годах.
Гравитацио́нный манёвр, реже пертурбацио́нный манёвр, — целенаправленное изменение траектории полёта космического аппарата под действием гравитационных полей небесных тел.
Пилотируемый полёт на Марс — запланированный полёт человека на Марс с помощью пилотируемого космического корабля. Роскосмос, НАСА и EKA объявили полёт на Марс своей целью в XXI веке.
Низкая опорная орбита (НОО, низкая околоземная орбита) — орбита космического аппарата около Земли. Орбиту правомерно называть «опорной», если предполагается её значительное изменение — увеличение высоты или изменение наклонения. Если же маневры не предусмотрены, или космический аппарат вообще не имеет собственной двигательной установки, предпочтительно использование названия «низкая околоземная орбита». В общем случае считается, что космический аппарат находится на опорной орбите, если он движется...
«Протон» — серия из четырёх советских тяжёлых научных искусственных спутников Земли, запущенных с 1965 по 1968 годы.
Низкозатратная переходная траектория (НПТ) — это маршрут в космосе, который позволяет космическим аппаратам менять орбиты, используя очень мало топлива. Эти маршруты работают в системе Земля — Луна, а также в других системах, например, между спутниками Юпитера. Недостатком таких траекторий является то, что зачастую для их завершения требуется значительно больше времени, чем для траекторий более высоких энергий (с бо́льшими затратами топлива), таких как траектории Гомана.
Программа Пегас — три американских спутника, запущенных в 1965 году для изучения частоты воздействия микрометеоритов на космические корабли. Все три спутника Пегас были запущены ракетой Сатурн I, и оставались соединёнными со своими верхними ступенями.
«Восток» — советская космическая программа серии одноместных пилотируемых космических кораблей «Восток» для полётов по околоземной орбите. В ходе её реализации космонавт Юрий Алексеевич Гагарин на корабле «Восток-1» 12 апреля 1961 года стал первым человеком, побывавшим в космосе.
ОДЕРАКС (ODERACS, англ. Orbital DEbris RAdar Calibration Spheres — сферы для калибровки радаров, отслеживающих орбитальный мусор) — международный эксперимент по обнаружению малоразмерных космических объектов и калибровке радаров и оптических средств в целях отслеживания космического мусора. В трёх полётах американского шаттла планировалось выпустить пассивные наноспутники (металлические шары и металлические ленты различных размеров).
Метеорологический спутник — искусственный спутник Земли, созданный для получения из космоса метеорологических данных о Земле, которые используются для прогноза погоды. Спутники этого типа несут на борту приборы, с помощью которых наблюдают в частности за температурой поверхности Земли и облачным, снеговым и ледовым покровом. Методы получения метеоинформации и способы её обработки с помощью метеоспутников изучает спутниковая метеорология.
Орбитальный аппарат — это беспилотный космический аппарат для исследования планеты или другого небесного тела с орбиты вокруг этого тела.
NICER или Найсер (англ. Neutron star Interior Composition Explorer) — прибор для проведения астрофизических наблюдений, компонент Международной космической станции, установленный в рамках программы НАСА «Эксплорер». Прибор позволит проверить большое число теоретических моделей физики недр нейтронных звёзд. Миссия обеспечит наблюдение пульсации излучения стремительно вращающихся нейтронных звёзд — пульсаров — для определения с их помощью характера процессов, протекающих внутри этих звёздных остатков...
«Аракс» (Индекс ГРАУ — 11Ф664) — российский тяжёлый спутник оптико-электронной разведки. Разработан в НПО имени С. А. Лавочкина.

Упоминания в литературе (продолжение)

В распространении радиоволн всех диапазонов (за исключением очень коротких, длиной λ < 10 м) важную роль играет ионосфера. Это верхние сильно разряженные слои атмосферы, находящиеся на высоте свыше 100 км над поверхностью Земли и в значительной степени ионизированные под действием солнечного и космического излучения. Особенности распространения радиоволн в ионосфере практически полностью определяются концентрацией в ней свободных электронов, подвижность которых на несколько порядков выше подвижности ионов Концентрация электронов в ионосфере зависит не только от высоты над поверхностью Земли, но также от времени года, времени суток, солнечной активности; кроме того, она подвержена быстрым изменениям случайного характера.
Решением вопроса хранения позитронов занимается компания Positronics Research LLC, ею руководит бывший профессор Пенсильванского университета Джеральд Смит, к которому мы вернемся в конце книги. Кроме ловушек Пеннинга ученые предложили использовать для хранения позитронов и квазистабильные образования – позитронии. Позитроний представляет собой систему из вращающихся друг вокруг друга позитрона и электрона, которые удерживаются от столкновения электромагнитными полями. После этого открытия фирма получила от военного ведомства США 3,7 миллиона долларов на дальнейшие исследования.
Выяснилось, что орбиты электронов значительно отличаются от орбит планет Солнечной системы вследствие их волновой природы. Атом нельзя уподобить маленькой планете, ибо нам следует представлять себе не частицы, вращающиеся вокруг ядра, а вероятностные волны. Как мы выясним чуть позже, квантовая механика убедительно доказывает, что все частицы, из которых состоит атом, обладают двойной природой: являются одновременно и волной, и частицей.
Кроме количества, размеров, местоположения и прочих характеристик солнечных пятен, существует немало методов определения солнечной активности. Например, один из самых эффективных «непрямых» методов: интенсивность солнечного ветра определяется по количественному содержанию в атмосфере нашей планеты радиоактивного изотопа углерода-14. который образуется именно в результате воздействия на атмосферу заряженных протонов и электронов, из которых состоит солнечный ветер. Метод считается довольно действенным – по результатам исследований, большое количество пятен на фотосфере Солнца вполне соответствует высокой концентрации радиоактивного изотопа углерода-14 в атмосфере Земли. Однако едва ли возможно эффективно использовать данный метод для прогнозирования «солнечной погоды» – он работает только постфактум.
Затем в мгновение ока появилось не просто нечто, а все, чему предстояло существовать, и все сразу. В этот момент объем Вселенной был меньше ядра атома. Сверхплотный космос появился в виде чистой однородной энергии, и никакие частицы не нарушали его абсолютное единообразие. Вселенная начала стремительно расширяться, однако не во внешнее пространство (у нашей Вселенной не существует внешнего пространства). Ее объем, все еще состоящий из раскаленной энергии, ширился и увеличивался. По мере расширения Вселенная-энергия остывала. Первые субатомные частицы появились в считаные доли секунды после Большого взрыва – это были электроны и кварки, невидимая субстанция всех твердых, жидких и газообразных элементов, составивших наш мир и порожденных чистой энергией. Вскоре после этого, в течение все тех же долей космической секунды, кварки объединились в пары и триплеты, формируя более крупные частицы, включая протоны и нейтроны, входящие в ядро атома. Все эти структуры оставались предельно раскаленными около полумиллиона лет, пока продолжающееся расширение Вселенной не остудило космос до нескольких тысяч градусов – достаточно низкая температура, чтобы прицепить электроны к ядрам и сформировать таким образом первые атомы. В числе этих атомов подавляющее большинство составлял водород (более 90 % всех атомов), входил небольшой процент гелия и вкрапления лития. Из смеси этих элементов образовались первые звезды.
Оказалось, что магнитосфера нашей планеты похожа на бутылку или колбу, обращенную дном к Солнцу (см. фото на вклейке). Внутри этой «магнитной бутылки» на расстоянии 10–12 земных радиусов находится Земля. За ней на ночной стороне на многие миллионы километров простирается длинное и узкое горлышко, или, как его часто называют, хвост магнитосферы. Такой вид магнитосферы обусловлен обдуванием ее солнечным ветром, обнаруженным в те же годы и состоящим в основном из протонов и электронов.
Каждый раз, когда создается ядро гелия, возникают и частицы света – они называются фотонами. В этих фотонах заключено достаточно энергии, чтобы назвать их гамма-лучами – разновидностью света, обладающей самой большой энергией по существующей классификации. Фотоны гамма-излучения, от рождения движущиеся со скоростью света – 300 000 километров в секунду, – волей-неволей начинают пробиваться к поверхности Солнца. Если фотону не мешать, он будет двигаться по прямой. Однако, если что-то встает у него на пути, он либо отражается, либо поглощается, а затем испускается снова. В результате каждого из конкретных вариантов взаимодействия фотон летит в разных направлениях с разной энергией. Учитывая плотность солнечного вещества, средний путь фотона по прямой длится меньше одной тридцатимилилардной доли секунды (тридцатая часть наносекунды) – за это время фотон еле-еле успевает пролететь около сантиметра, после чего взаимодействует либо со свободным электроном, либо с атомом.
Белые карлики – весьма любопытные объекты. Представляя собой, по сути дела, мертвую звезду (термоядерные реакции давным-давно сошли на нет), они продолжают излучать, а гравитационное сжатие тем не менее не в силах преодолеть противодействующее ему высокое давление. Сразу же возникает вопрос: откуда это давление берется, если температура внутренних областей звезды сравнительно невысока (действительно так), а термоядерные реакции приказали долго жить? Во всем «виноваты» парадоксальные законы квантовой механики. Под действием гравитации вещество белого карлика уплотняется настолько, что атомные ядра буквально втискиваются внутрь электронных оболочек соседних атомов. Электроны утрачивают интимную связь со своими родными атомами и начинают свободно путешествовать в межатомных пустотах по всему пространству звезды, в то время как голые ядра образуют устойчивую жесткую систему – некое подобие кристаллической решетки. Такое состояние называется вырожденным электронным газом, и хотя белый карлик продолжает остывать, средняя скорость электронов уменьшаться не думает. По законам квантовой механики, чем ближе друг к другу находятся электроны, тем сильнее должны различаться их скорости, из чего следует, что большая часть электронов будет двигаться очень быстро. Послушаем физиков:
Начало развитию электроники (термин в 1904 г. ввел немецкий ученый Артур Рудольф Венельт) положило изобретение электронных приборов для усиления и генерирования слабых токов и высокочастотных колебаний: двухэлектродной лампы-диода (англичанин Джон Флеминг, 1904 г.) и трехэлектродной лампы-триода (американец французского происхождения Ли де Форест, 1906 г.). Данным изобретениям предшествовало открытие в 1875 г. Томасом Эдисоном эффекта «термоионной эмиссии» – почернения внутренней поверхности герметичной стеклянной колбы лампы накаливания в результате, как тогда считали, испускания электрически заряженных частиц-ионов (от греч. «ион» – путешествующий) сильно нагретыми твердыми телами. Факт существования электрона и термоэлектронной эмиссии бесспорным стал лишь в 1911 г.
• кремний нужно получить в виде монокристалла или в виде материала с высокой степенью монокристалличности. Так как большинство материалов являются поликристаллическими, т.е. состоят из большого числа индивидуальных кристалликов, то возбужденные электроны будут перемещаться от одного кристаллика к другому, дезактивируясь при столкновении с гранями кристалликов. Из-за этого лишь незначительное число электронов достигнет поверхности раздела, и примет участие в создании разности потенциала. Достаточно высоким напряжением обладают только чистые монокристаллы кремния. Поэтому этот метод использования энергии Солнца является весьма дорогостоящим. Но в противоположность атомной энергетике преобразователь солнечной энергии является целиком и полностью «чистым».
Однако во Вселенной существуют объекты с огромной массой, сосредоточенной в очень небольшом объеме. Это нейтронные звезды, возникающие в результате гравитационного сжатия остывающих звезд. Все их вещество состоит, в отличие от обычных тел, не из атомов, а из свободных элементарных частиц: протонов, нейтронов и электронов. Искривление пространства вблизи таких звезд приобретает значительные масштабы. Если же масса нейтронной звезды превышает массу Солнца примерно в два с половиной раза, то она сжимается до таких пределов, что искривление пространства достигает максимальной степени, и оно образует замкнутый круг. Свет, излучаемый самой звездой или попавший в это пространство извне, не способен вырваться за его пределы. Образно говоря, эти звезды похожи на дырки в окружающем их пространстве, в которые все проваливается и ничего не выходит наружу. Отсюда и название этих небесных тел – черные дыры. Плотность вещества внутри черных дыр принимает совершенно недоступные человеческому воображению значения. Достаточно сказать, что нашему Солнцу для превращения в черную дыру нужно уменьшиться до 6 километров в диаметре (диаметр Солнца 1 892 000 километров).
Лето – пора, бросающая вычислительной технике серьезный вызов. К сожалению, техника эта в наши дни в основном полупроводниковая, т. е. обладающая чрезвычайно низким КПД. Эффективность преобразования потребленной энергии в работу (упорядоченное движение электронов в логических цепях, составляющее, собственно, суть полупроводниковых вычислительных процессов) находится на уровне десятых и сотых долей промилле.
Транс-космическое путешествие каждого фотона начинается в той точке, где он налетел на последний электрон, очутившийся у него на пути, – в «точке последнего рассеяния». По мере того как фотоны беспрепятственно разбегаются в разные стороны, они создают расширяющуюся «поверхность» последнего рассеяния – глубиной примерно 120 000 лет. Это та самая поверхность, на которой родились все атомы во Вселенной: электрон присоединяется к атомному ядру, и крошечный выброс энергии в виде фотона улетает прочь в бурную алую даль.
Электроны и протоны, положительные и отрицательные частицы соединяются в постоянном заряде, образуя существо, не похожее ни на атомную решетку, ни на жидкую плазму. Для вашего удобства назовем это явление союзом потенциалов и влияний, а существо – плазмотом. Плазмоты представляют собой магнитные поля различных конфигураций, вихрем несущиеся через солнечную атмосферу.
Превзойти же геологические силы жизнь смогла, обретя иной источник энергии. Все тектонические процессы – движение плит, горообразование и др. – идут благодаря тепловому потоку, поступающему из недр Земли (радиоактивный распад и остаточное аккреционное тепло, выделившееся при столкновении планетезималей и протопланет). Этот поток оценивается в 8,7 × 10–5 Вт/м2, но тектоника успевает захватить не более десятой доли энергии (~1 × 10–5 Вт/м2). Остальное рассеивается в космосе. Жизненные силы через различные формы фотосинтеза подпитываются напрямую от энергии Солнца – 340 Вт/м2. Причем за время эволюции КПД организмов возрос: от анаэробного фотосинтеза, зависимого от различных соединений, как доноров электронов, живые существа перешли на кислородный его вариант. В этом случае используется неисчерпаемый океан электронов – вода. Быстрое истощение некоторых элементов (железо, азот, фосфор), необходимых для функционирования организмов, должно было бы ограничить дальнейший рост КПД, но благодаря ускорению круговорота этих элементов (за счет совершенствования трофической пирамиды и появления новых организмов – деструкторов отмершего органического вещества) и эта проблема была решена. На сегодняшний день биосфера потребляет в год 26,8 × 10–5 Вт/м2 только солнечной энергии. Это всего 0,07 % от энергии Солнца, поскольку 30 % рассеивается атмосферой и поверхностью Земли, а еще 69,93 % уходит на нагрев планеты и теряется в виде длинноволнового излучения.
Если же окажется, что скорость света изменить не в наших силах, мы можем пойти другим путем, используя пространственно-временные тоннели (wormholes – «кротовые норы»). Это некие искривления во Вселенной, имеющие больше трех видимых измерений, которые можно использовать как короткий путь к отдаленным территориям. В 1935 г. Эйнштейн и физик Натан Розен предположили, что электроны и другие частицы можно описать как крохотные тоннели пространства-времени. Двадцать лет спустя физик Джон Уиллер впервые употребил термин wormhole. Он проанализировал пространственно-временные тоннели и показал, что их существование целиком и полностью соответствует теории общей относительности, которая гласит, что пространство, главным образом, искривлено в других измерениях.
Первую половину XX в. физики всего мира тщательно изучали строение атома и его ядра. Многих поражало, что, несмотря на свою малость, одна капля воды состоит примерно из 6000 миллиардов миллиардов (6 000 000 000 000 000 000 000) атомов водорода и кислорода. А каждый атом имеет строение, в некоторой степени сходное со строением нашей Солнечной системы. Вокруг ядра-«солнца» вращаются крохотные «планеты» – электроны.
Дальнейший спуск в атмосферу сопровождается все большим увеличением температуры и давления, значения которых достигают поистине чудовищных величин. Газы постепенно переходят в жидкую форму. Примерно на глубине в 21 000 километров давление составляет 200 000 земных атмосфер, а температура равна 6 000 °C! Здесь атмосфера плавно переходит в океан из жидкого металлического водорода, сформировавшийся под воздействием колоссальных давлений и высоких температур – при таких условиях потенциал ионизации водорода значительно меньше кинетической энергии электронов, что приводит к отделению электрона от протона, следствием чего является высокая электропроводимость металлического водорода. Предполагаемая толщина слоя металлического водорода – 42–46 тыс. км.
Нейтрино – это элементарные частицы. Они подобны электронам, которые роятся вокруг атомного ядра, или кваркам, из которых состоят протоны и нейтроны. Нейтрино – одни из фундаментальных первоэлементов материи, однако они свободно проникают в атомы и покидают их. Кроме того, в отличие от многих других субатомных частиц, нейтрино не имеют электрического заряда, обладают ничтожной массой и практически не взаимодействуют с другими частицами. Если бы можно было создать свинцовый стержень длиной в один световой год[1], то типичный нейтрино мог бы пройти его из конца в конец, не задев ни одного атома. Именно в этом и заключается основная загвоздка, связанная с исследованием нейтрино: эти частицы, если можно так выразиться, патологически застенчивы. Они ни за что не желают взаимодействовать со своими собратьями, поэтому их так сложно отловить. Но время от времени нейтрино все-таки сталкиваются с другими частицами – например, с протоном из молекулы воды. Обычно это происходит случайно. Задача физиков – повысить вероятность такого столкновения и, следовательно, увеличить наши шансы увидеть нейтрино. Поэтому ученые конструируют огромные уловители этих частиц. Один из подобных комплексов – лаборатория «Ледяной куб».
Основным конструкционным материалом этого истребителя был алюминиево-магниевый сплав альмаг. Топливные баки изготавливались из еще более легкого сплава – «электрон». Все элементы конструкции фюзеляжа, выполненного в виде монокока, соединялись, как и прежде, точечной и роликовой сваркой. Все это позволяло (по расчетам) уложиться в полетный вес не более 1500 кг.
Из черной дыры не может улететь никакая частица: ни электрон, ни протон, ни даже частицы света – фотоны, движущиеся с огромной скоростью. А раз свет из них не выходит, мы воспринимаем их как массивные, но невидимые тела. Все, что падает на черную дыру, там и остается, а вернуться ничего не может.
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я