Связанные понятия
Акти́ний — химический элемент с атомным номером 89, обозначается в периодической системе элементов символом Ac (лат. Actinium). Не имеет стабильных изотопов. При нормальных условиях представляет собой тяжёлый серебристо-белый металл.
Изотопная распространённость (или распространённость изотопов) — относительное количество атомов разных изотопов одного химического элемента; обычно выражается в % к сумме атомов всех долгоживущих (с периодом полураспада Т > 3⋅108 лет) изотопов данного элемента в среднем в природе (либо с отнесением к той или иной природной среде, планете, региону и т. п.). Точное измерение изотопной распространённости имеет большое значение для определения атомных масс элементов.
Техне́ций — элемент седьмой группы (по устаревшей классификации — побочной подгруппы седьмой группы), пятого периода периодической системы химических элементов, атомный номер — 43. Обозначается символом Tc (лат. Technetium). Простое вещество технеций — радиоактивный переходный металл серебристо-серого цвета. Самый лёгкий элемент, не имеющий стабильных изотопов. Первый из синтезированных химических элементов. Только около 18 000 тонн естественно образовавшегося технеция могут быть найдены в любой...
Изомери́я а́томных я́дер — явление существования у ядер атомов метастабильных (изомерных) возбуждённых состояний с достаточно большим временем жизни.
Периоди́ческая систе́ма хими́ческих элеме́нтов (табли́ца Менделе́ева) — классификация химических элементов, устанавливающая зависимость различных свойств элементов от их заряда атомного ядра. Система является графическим выражением периодического закона, открытого русским учёным Д. И. Менделеевым в 1869 году.
Упоминания в литературе
Учитывая, что с момента выхода в свет книги Масару Эмото прошло 10 лет, я попыталась проанализировать высказывания известного японского учёного с позиций последних научных данных о количестве
химических элементов , которые уже обнаружены или могут быть обнаружены в естественных природных условиях. Для начала стоит кратко вспомнить, что такое «химические элементы». Все окружающие нас объекты, живые и неживые тела природы на нашей планете имеют общую особенность: они состоят из множества мельчайших структурных частиц, называемых атомами химических элементов. В общепринятом понимании химические элементы – это лишь графическое отображение атомов – частиц, из которых складывается всё существующее во Вселенной. Это сложные маленькие структуры, совокупности всех изотопов атомов, объединенные общим названием. Можно также сказать, что химические элементы – это определенные виды атомов, характеризующиеся одинаковым зарядом ядра, составляющие основу для построения молекул, простых и сложных соединений, а следовательно, химических взаимодействий. Открытием и изучением химических элементов и их соединений занимается наука химия. Из истории этого вопроса известно, что к середине XIX в. в мире было известно 63 химических элемента. В 1869 г. Д. И. Менделеев представил русскому химическому обществу сообщение об открытии им закона периодичности химических элементов, а в 1871 г. уже придал своей периодической таблице вид, ставший классическим. Менделеев также смог предсказать существование 12 новых, неизвестных до этого элементов. Постепенно таблица Менделеева заполнялась всё новыми, открытыми наукой элементами. Также с середины XX столетия российскими учёными в г. Дубна, американскими – в г. Беркли и немецкими в Дармштадте почти одновременно и параллельно начали проводиться серьёзные системные аналитические исследования по синтезу трансурановых ядер – радиоактивных элементов, расположенных в периодической системе элементов Менделеева за ураном, то есть с атомным номером выше 92.
Когда Ферми и его коллеги в своей лаборатории в Риме бомбардировали природный уран нейтронами, они пришли к выводу, что в результате захвата нейтрона атомом урана-238 образуется нестабильный изотоп урана-239. Затем вновь образовавшийся атом выделяет один (отрицательно заряженный) электрон и из
химического элемента под номером 92 превращается в неизвестный в те времена элемент тяжелее урана, помещенный в таблице под номером 93. Для того чтобы доказать, что он действительно получил новый «трансурановый» элемент, Ферми провел серию химических реакций со всеми продуктами, полученными в результате его опыта, и к своему удовлетворению убедился в том, что хотя бы один из них по своим химическим свойствам отличается от остальных химических элементов, по крайней мере от всех существующих элементов тяжелее свинца. Как физик, он не видел смысла в сравнении свойств вновь полученного элемента с элементами, стоящими в периодической таблице ниже свинца. Ферми обосновал свой вывод тем, что полученный им новый элемент должен быть тяжелее имеющего самую большую массу из известных в то время химических элементов урана. Кроме того, он обосновал то, что в результате уже известного процесса радиоактивного распада атом урана не мог настолько уменьшиться в массе, чтобы занять в таблице место рядом со свинцом. Немецкий химик Ида Ноддак выступила против выводов Ферми: экспериментальным путем она доказала, что в результате бомбардировки нейтронами происходит деление ядра урана, а не его радиоактивный распад. Однако Ноддак отказалась от дальнейших исследований в этом направлении, поэтому ее предположение осталось незамеченным в мировой физике.
Однако на сегодняшний день существует интересная точка зрения, высказываемая В.М. Мухачевым, которая немного открывает тайну "живой" и "мертвой" воды. Дело в том, что атомы водорода и кислорода, входящие в состав воды, могут иметь разные массовые числа, отличаться по своим физико-химическим свойствам, но иметь одинаковый электрический заряд атомных ядер. Такие разновидности атомов одного и того же
химического элемента называются изотопами. Изотопный состав определяет некоторые свойства воды: наличие изотопа водорода, именуемого дейтерием, делает ее "мертвой", а наличие протия – "живой".
Согласно модели Бора, в состав атома входят три вида частиц. С электронами мы уже знакомы. Две другие частицы, существенно превосходящие по размеру электрон, но по-прежнему настолько малые, что мы не можем увидеть их, называются протон и нейтрон. Они почти одинакового размера. Число протонов в атоме любого
химического элемента постоянно и равно числу электронов. Оно называется атомным числом и является уникальным свойством химического элемента. Нет никаких промежутков в последовательности атомных чисел в знаменитой периодической таблице элементов[26]. Каждый номер в ряду соответствует одному и только одному химическому элементу. Элемент с атомным числом 1 – водород, 2 – гелий, 3 – литий, 4 – бериллий, 5 – бор, 6 – углерод, 7 – азот, 8 – кислород, и так далее.
Сравнив количество разных видов атомов в современной Вселенной, мы сразу увидим, что самые распространенные в ней после водорода и гелия элементы – кислород (Z=8), углерод (Z=6) и азот (Z=7). Это можно наглядно показать на графике, изображающем относительное обилие
химических элементов в нашей галактике Млечный Путь (см. рис. 1.3). По горизонтальной оси там можно отложить атомный номер (Z), а по вертикальной – распространенность элементов, причем желательно в логарифмическом масштабе (попросту говоря, это означает, что каждая “ступенька” на вертикальной оси соответствует разнице не на единицу, а в 10 раз). На таком графике первым делом бросается в глаза уже известный нам факт: водорода и гелия в Галактике во много раз больше, чем всех остальных химических элементов вместе взятых. Эти два элемента – вне конкуренции. В области лития (Z=3), бериллия (Z=4) и бора (Z=5) наблюдается явный провал, потому что ядра этих атомов относительно неустойчивы: в системе ядерных реакций, происходящих в звездах, они легко синтезируются, но так же легко и распадаются. Ядро железа (Z=26), наоборот, исключительно устойчиво. Многие ядерные реакции, идущие в недрах звезд, на нем заканчиваются, поэтому железо дает на графике высокий пик. Но самые распространенные после водорода и гелия элементы в Млечном Пути, несомненно, кислород, углерод и азот, именно те, которые стали химическими “кирпичиками” жизни. Вряд ли это случайность.
Связанные понятия (продолжение)
А́томная ма́сса — масса атома. Единица измерения в СИ — килограмм, по факту обычно применяется внесистемная единица атомная единица массы.
А́том (от др.-греч. ἄτομος «неделимый, неразрезаемый») — частица вещества микроскопических размеров и массы, наименьшая часть химического элемента, являющаяся носителем его свойств.
То́рий — элемент III группы таблицы Менделеева, принадлежащий к актиноидам; тяжёлый слаборадиоактивный металл.
Нукли́д (лат. nucleus — «ядро» и др.-греч. είδος — «вид, сорт») — вид атомов, характеризующийся определённым массовым числом, атомным номером и энергетическим состоянием ядер и имеющий время жизни, достаточное для наблюдения.
Нейтро́н (от лат. neuter — ни тот, ни другой) — тяжёлая элементарная частица, не имеющая электрического заряда. Нейтрон является фермионом и принадлежит к классу барионов. Нейтроны и протоны являются двумя главными компонентами атомных ядер; общее название для протонов и нейтронов — нуклоны.
Моноизотопный элемент , мононуклидный элемент, изотопно-чистый элемент, однородный элемент — химический элемент, характеристический изотопный состав которого включает только один изотоп. То есть такой элемент представлен в природе только одним изотопом.
Изото́пы (от др.-греч. ισος — «равный», «одинаковый», и τόπος — «место») — разновидности атомов (и ядер) какого-либо химического элемента, которые имеют одинаковый атомный (порядковый) номер, но при этом разные массовые числа. Название связано с тем, что все изотопы одного атома помещаются в одно и то же место (в одну клетку) таблицы Менделеева. Химические свойства атома зависят от строения электронной оболочки, которая, в свою очередь, определяется в основном зарядом ядра Z (то есть количеством...
Зарядовое число атомного ядра (синонимы: атомный номер, атомное число, порядковый номер химического элемента) — количество протонов в атомном ядре. Зарядовое число равно заряду ядра в единицах элементарного заряда и одновременно равно порядковому номеру соответствующего ядра химического элемента в таблице Менделеева.
Вале́нтность (от лат. valēns «имеющий силу») — способность атомов химических элементов образовывать определённое число химических связей.
Просты́е вещества ́ — химические вещества, состоящие исключительно из атомов одного химического элемента (из гомоядерных молекул), в отличие от сложных веществ. Являются формой существования химических элементов в свободном виде; или, иначе говоря, химические элементы, не связанные химически ни с каким другим элементом, образуют простые вещества. Известно свыше 400 разновидностей простых веществ.
Це́зий (химический символ — Cs; лат. Caesium) — элемент главной подгруппы первой группы шестого периода периодической системы химических элементов Д. И. Менделеева, атомный номер — 55. Простое вещество цезий — мягкий щелочной металл серебристо-жёлтого цвета. Своё название цезий получил за наличие двух ярких синих линий в эмиссионном спектре (от лат. caesius — небесно-голубой).
Трансура́новые элеме́нты (заурановые элементы, трансураны) — радиоактивные химические элементы, расположенные в периодической системе элементов Д. И. Менделеева за ураном, то есть с атомным номером выше 92.
Проме́тий — химический элемент, относящийся к группе лантаноидов. В природе практически не встречается, так как все его изотопы радиоактивны. Впервые был получен искусственно в 1945 году. Самый долгоживущий изотоп — прометий-145 имеет период полураспада 18 лет.
Подгру́ппа углеро́да — химические элементы 14-й группы периодической таблицы химических элементов (по устаревшей классификации — элементы главной подгруппы IV группы).
Актино́иды (актини́ды) — семейство, состоящее из 15 радиоактивных химических элементов III группы 7-го периода периодической системы с атомными номерами 89—103.
Бери́ллий (Be, лат. beryllium) — химический элемент второй группы, второго периода периодической системы с атомным номером 4. Как простое вещество представляет собой относительно твёрдый металл светло-серого цвета, имеет очень высокую стоимость. Высокотоксичен.
Радиоакти́вный распа́д (от лат. radius «луч» и āctīvus «действенный», через фр. radioactif, букв. — «радиоактивность») — спонтанное изменение состава (заряда Z, массового числа A) или внутреннего строения нестабильных атомных ядер (нуклидов) путём испускания элементарных частиц, гамма-квантов и/или ядерных фрагментов. Процесс радиоактивного распада также называют радиоакти́вностью, а соответствующие нуклиды — радиоактивными (радионуклидами). Радиоактивными называют также вещества, содержащие радиоактивные...
Углеро́д (C, лат. carboneum) — химический элемент, символизируемый буквой C и имеющий атомный номер 6. Элемент является четырехвалентным неметаллом, т. е. имеет четыре свободных электрона для формирования ковалентных химических связей. Он располагается в 14 группе периодической системы. Три изотопа данного элемента встречаются в окружающем нас мире. Изотопы 12C и 13C являются стабильными, в то время как 14C- радиоактивный (период полураспада данного изотопа составляет 5,730 лет). Углерод был известен...
Кю́рий (лат. Curium (Cm)) — 96-й элемент таблицы Менделеева, синтезированный трансурановый элемент.
Флеро́вий (лат. Flerovium, Fl), ранее был известен как унунква́дий (лат. Ununquadium, Uuq), использовалось также неофициальное название эка-свинец — 114-й химический элемент 14-й группы (по устаревшей классификации — главной подгруппы IV группы), 7-го периода периодической системы, атомный номер 114, из известных изотопов наиболее устойчив 289Fl с атомной массой 289,190(4) а. е. м.. Элемент сильно радиоактивен.
Фра́нций — элемент главной подгруппы первой группы седьмого периода периодический системы химических элементов Д. И. Менделеева, с атомным номером 87. Обозначается символом Fr (лат. Francium). Простое вещество франций — радиоактивный щелочной металл, обладающий максимально высокой восстановительной химической активностью.
Аста́т — химический элемент с атомным номером 85. Принадлежит к 17-й группе периодической таблицы химических элементов (по устаревшей короткой форме периодической системы принадлежит к главной подгруппе VII группы, или к группе VIIA), находится в шестом периоде таблицы. В природе отсутствует, массовое число наиболее стабильного из известных изотопов равно 210(его атомная масса равна 209,98715(5) а. е. м.). Обозначается символом At (от лат. Astatium). Радиоактивен. Простое вещество астат при нормальных...
Ливермо́рий (лат. Livermorium, Lv), ранее был известен под вре́менными названиями унунге́ксий (лат. Ununhexium, Uuh) и э̀ка-поло́ний — 116-й химический элемент, относится к 16-й группе (по устаревшей классификации — к главной подгруппе VI группы) и 7-му периоду периодической системы, атомный номер — 116, массовое число наиболее устойчивого изотопа — 293 (атомная масса этого изотопа равна 293,204(5) а. е. м.). Искусственно синтезированный радиоактивный элемент, в природе не встречается.
Сте́пень окисле́ния (окислительное число) — вспомогательная условная величина для записи процессов окисления, восстановления и окислительно-восстановительных реакций. Она указывает на состояние окисления отдельного атома молекулы и представляет собой лишь удобный метод учёта переноса электронов: она не является истинным зарядом атома в молекуле (см. #Условность).
Ли́тий (Li, лат. lithium) — химический элемент первой группы, второго периода периодической системы с атомным номером 3. Как простое вещество представляет собой мягкий щелочной металл серебристо-белого цвета.
Немета́ллы — химические элементы с типично неметаллическими свойствами, которые занимают правый верхний угол Периодической системы. Расположение их в главных подгруппах соответствующих периодов следующее...
Подгруппа титана — химические элементы 4-й группы периодической таблицы химических элементов (по устаревшей классификации — элементы побочной подгруппы IV группы). По номенклатуре ИЮПАК подгруппа титана содержит в себе титан, цирконий, гафний и резерфордий.
А́льфа-распа́д — вид радиоактивного распада ядра, в результате которого происходит испускание дважды магического ядра гелия 4He — альфа-частицы. При этом массовое число ядра уменьшается на 4, а атомный номер — на 2.
Редкоземе́льные элеме́нты (аббр. РЗЭ, TR, REE, REM) — группа из 17 элементов, включающая скандий, иттрий, лантан и лантаноиды (церий, празеодим, неодим, прометий, самарий, европий, гадолиний, тербий, диспрозий, гольмий, эрбий, тулий, иттербий, лютеций).
Подгру́ппа ци́нка — химические элементы 12-й группы периодической таблицы химических элементов (по устаревшей классификации — элементы побочной подгруппы II группы).
Эле́ктроотрица́тельность (χ) (относительная электроотрицательность) — фундаментальное химическое свойство атома, количественная характеристика способности атома в молекуле смещать к себе общие электронные пары, то есть способность атомов оттягивать к себе электроны других атомов. Самая высокая степень электроотрицательности у галогенов и сильных окислителей (p-элементов, F, O, N, Cl), а низкая — у активных металлов (s-элементов I группы).
Стро́нций — химический элемент с атомным номером 38. Принадлежит к 2-й группе периодической таблицы химических элементов (по устаревшей короткой форме периодической системы принадлежит к главной подгруппе II группы, или к группе IIA), находится в пятом периоде таблицы. Атомная масса элемента 87,62(1) а. е. м.. Обозначается символом Sr (от лат. Strontium). Простое вещество стронций — мягкий, ковкий и пластичный щёлочноземельный металл серебристо-белого цвета. Обладает высокой химической активностью...
Коперни́ций (лат. Copernicium, Cn; в качестве русского названия используется также копе́рникий; ранее использовались названия уну́нбий, лат. Ununbium, Uub и эка-ртуть) — 112-й химический элемент. Ядро наиболее стабильного из его известных изотопов, 285Cn, состоит из 112 протонов, 173 нейтронов и имеет период полураспада около 34 секунд, атомная масса этого нуклида равна 285,177(4) а. е. м.. Относится к той же химической группе, что и цинк, кадмий и ртуть.
Полумета́ллы (металлоиды) — химические элементы, расположенные в периодической системе на границе между металлами и неметаллами. Для них характерно наличие ковалентной кристаллической решётки и металлической проводимости.
Поло́ний — радиоактивный химический элемент 16-й группы (по устаревшей классификации — главной подгруппы VI группы), 6-го периода в периодической системе Д. И. Менделеева, с атомным номером 84, обозначается символом Po (лат. Polonium). Относится к группе халькогенов. При нормальных условиях представляет собой мягкий радиоактивный металл серебристо-белого цвета.
Про́тий — название самого лёгкого изотопа водорода, обозначается символом 1H. Ядро протия состоит из одного протона, отсюда и название изотопа. Оно было предложено 15 июня 1933 года Юри, Мерфи и Брикведде в письме редактору научного журнала «The Journal of Chemical Physics», где они отметили, что произвели название «протий» (англ. protium) от греческого слова «protos» («первый»).
Лантано́иды (лантани́ды) — семейство, состоящее из 15 химических элементов III группы 6-го периода периодической таблицы — металлов, с атомными номерами 57—71 (от лантана до лютеция). Все представители семейства имеют стабильные изотопы, кроме прометия.
Нихо́ний (лат. Nihonium, Nh), который ранее фигурировал под временными наименованиями уну́нтрий (лат. Ununtrium, Uut) или эка-таллий, — химический элемент 13-й группы (по устаревшей классификации — главной подгруппы III группы) 7-го периода периодической системы. Атомный номер — 113. Атомная масса наиболее устойчивого из известных изотопов, 286Nh, с периодом полураспада 20 с, составляет 286,182(5) а. е. м.. Радиоактивен.
Це́рий (химический символ — Ce; лат. Cerium) — химический элемент из группы лантаноидов, серебристый металл.
Щёлочноземе́льные мета́ллы — химические элементы 2-й группы периодической таблицы элементов: бериллий (Be), магний (Mg), кальций (Ca), стронций (Sr), барий (Ba), радий (Ra), унбинилий (Ubn).
Ра́дий — элемент главной подгруппы второй группы, седьмого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 88. Обозначается символом Ra (лат. Radium). Простое вещество радий — блестящий металл серебристо-белого цвета, быстро тускнеющий на воздухе. Относится к щёлочноземельным металлам, обладает высокой химической активностью. Радиоактивен; наиболее устойчив нуклид 226Ra (период полураспада около 1600 лет).
Кайносимметрия (др.-греч. καινός новый и симметрия) — термин обозначает орбитали новой симметрии, то есть нового их расположения в пространстве — такого явления, когда электронные орбитали в атомах химических элементов появляются впервые по мере увеличения атомного номера, а именно орбитали 1s, 2p, 3d, 4f, 5g. Такие орбитали называются кайносимметричными. Явление открыто, и термин введён в научный оборот профессором Сергеем Александровичем Щукарёвым (1893—1984), заведующим кафедрой неорганической...
Электронная оболочка атома — область пространства наиболее вероятного нахождения электронов, имеющих одинаковое значение главного квантового числа n и, как следствие, располагающихся на близких энергетических уровнях. Число электронов в каждой электронной оболочке не может превышать определенного максимального значения.
Рентге́ний (лат. Roentgenium, обозначение Rg; ранее унуну́ний, лат. Unununium, обозначение Uuu или эка-золото) — искусственно синтезированный химический элемент побочной подгруппы первой группы, седьмого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 111. Простое вещество рентгений — переходный металл. Наиболее долгоживущий (период полураспада 2,1 минуты) известный изотоп имеет массовое число 282.
Аллотро́пия (от др.-греч. ἄλλος «другой» + τρόπος «поворот, свойство») — существование двух и более простых веществ одного и того же химического элемента, различных по строению и свойствам — так называемых аллотропных (или аллотропических) модификаций или форм.
Упоминания в литературе (продолжение)
Здесь, таким образом, ясно выступает это соотношение между органическими и неорганическими комплексами, а равно и между одними неорганическими. И оно явилось результатом развития в системе расхождения. Было время, когда атмосфера заключала в себе и всю нынешнюю гидросферу, в виде водяного пара: температура земной коры измерялась сотнями градусов, и вода не могла быть капельно-жидкой. С понижением температуры «вода» и «воздух» разделились; а затем от них обособилась и «жизнь»; ведь, она по основному составу есть комбинация тех же
химических элементов , какие образуют атмосферу и океаны: кислород, водород, азот, углерод, с прибавлением еще некоторых, имеющихся, в виде растворенных соединений, также и в морской воде. Сотнями миллионов лет, в ряду бесчисленных процессов подбора, развились дополнительные соотношения между разделившимися, но и сохраняющими связь гигантскими группировками элементов земной оболочки.
Судя по представленным примерам, существенная молекула соответствует у Ламарка не только
химическим элементам , таким как сера, металлы, но также камням, мелу, гипсу. В параграфе 30 (в оригинале ошибочно приведен как параграф 39) Ламарк недвусмысленно говорит, что существенная молекула образована из элементарных молекул, которые, сочетаясь в разных пропорциях, определяют природу (природные качества) первых. Опять же не следует соотносить элементарные молекулы с химическими элементами. Они у Ламарка исчисляются тысячами, тогда как писавший в его время Лавуазье говорил всего лишь о 23 химических элементах.
Вода – одно из самых уникальных и загадочных веществ на Земле. Но природа его до сих пор еще не понята до конца. Долгое время воду считали простым, неделимым элементом. Лишь в 1766 году Г. Кавендиш (Англия) и затем в 1783 году А. Лавуазье (Франция) доказали, что вода – не простой
химический элемент , а соединение кислорода и еще одного элемента в определенной пропорции. После этого открытия химический элемент, обозначаемый как Н, получил название «водород» (Hydrogen – от греч. hydro genes), что можно истолковать как «порождающий воду».
В зависимости от состава жидкости при переходе ее в твердое состояние кристаллиты-зерна имеют разный состав. В частности, могут состоять из простого вещества –
химического элемента , например чистого золота. Если расплав состоит не из одного, а из двух или более компонентов, то в результате кристаллизации возможны следующие виды взаимодействия:
Супруги Кюри не спешили дать имя новому элементу. Ведь черного налета на стекле было так мало, что его невозможно было даже взвесить, а одной радиоактивности для признания вещества новым элементом было недостаточно. Коллега и друг супругов Кюри французский химик Эжен Анатоль Демарсе, специалист в области спектрального анализа (в 1901 г. он открыл этим методом европий), исследовал спектр испускания черного налета и не обнаружил в нем новых линий, которые могли бы свидетельствовать о присутствии нового элемента. Спектральный анализ – один из самых чувствительных методов, значит, в налете это вещество содержалось в исключительно малых количествах. Поэтому в статье, опубликованной 18 июля 1898 г., супруги Кюри написали осторожно: «Мы думаем, что вещество, выделенное нами из урановой смолки, содержит не известный пока металл, являющийся по аналитическим свойствам аналогом висмута. Если существование нового металла будет подтверждено, мы предлагаем назвать его полонием, по родине одного из нас» (Polonia на латыни – Польша). Это единственный случай, когда еще не идентифицированный новый
химический элемент уже имел название. Получить весомые количества полония долго не удавалось – его в урановой руде было слишком мало. Лишь в 1910 г. путем переработки больших количеств руды удалось получить образец, содержащий 0,1 мг полония. Но прославило супругов Кюри открытие не полония, а радия.
Таким образом, Жолио-Кюри обнаружили, что некоторые из подвергаемых анализу образцов алюминия и бора превратились в новые
химические элементы . Более того, эти новые элементы были радиоактивными: алюминий, поглощая два протона и два нейтрона, превращался в радиоактивный фосфор, а бор – в радиоактивный изотоп азота. Поскольку эти неустойчивые радиоактивные элементы не были похожи ни на один из естественно образующихся радиоактивных элементов, было ясно, что они созданы искусственным путем.
К сожалению, кроме красноречивых фактов, свидетельствующих о том, что такая энергия существует, науке о ней почти ничего не известно. Выяснено лишь, что число
химических элементов , входящих в состав организма (азот, кислород, углерод, сера, магний, железо и т. д.), в два раза больше числа космических форм энергии.
Когда мы рассматриваем материалы, присущие этой сфере, нас поражает их огромное разнообразие, неисчислимые различия в составах окружающих нас минералов, растений, животных, которые все различаются по своим составным частям: жестким или мягким, прозрачным или непрозрачным, хрупким или гибким, горьким или сладким, приятным или неприятным, окрашенным или бесцветным. Из всего этого смешения выделяются три подразделения материи как основная классификация: материя твердая, жидкая и газообразная. Дальнейшее расследование показывает, что все эти твердые, жидкие и газообразные вещества образуются из комбинаций несравненно более простых тел, называемых химиками элементами, и что эти элементы могут существовать в твердом, жидком и газообразном состоянии, нисколько не изменяя при этом присущей им природы. Так,
химический элемент кислород является составной частью дерева и, в комбинации с другими элементами, составляет твердое волокно дерева; он же, в соединении с другими элементами, встречается в соке дерева как жидкость и в то же время существует сам по себе как газ. Во всех трех состояниях это – все тот же кислород. Далее чистый кислород может быть переведен из газообразного в жидкое, а из жидкого в твердое состояние, оставаясь при этом тем же чистым кислородом, и то же самое относится и ко всем другим элементам.
Длительное время ученые воспринимали воду в качестве самостоятельного
химического элемента . Только в конце XVIII века она была синтезирована англичанином Г. Кавендишем. Впоследствии его гипотезу о соединении водорода и кислорода подтвердил французский ученый А. Лавуазье.
Изотопы – это разновидности одного и того же
химического элемента . Их название (от греч. isos — одинаковый и topos – место) в дословном переводе означает «из одного места», иными словами – вещества, занимающие одно место в Периодической системе элементов Д.И. Менделеева.
Вы, конечно, слышали об атомах. Атомы – самые мельчайшие неделимые частички вещества. Например, самая маленькая крупинка золота, которая только возможна. Почему я для примера выбрал золото? Не только потому, что золото (как и все прочие химические элементы) родилось в недрах звезд, но и потому, что я очень люблю золото. А кто не любит? Кроме того, золото – простое химическое вещество, такие вещества называют
химическими элементами . Химических элементов, то есть простых веществ в мире меньше сотни. Они все собраны в особую табличку, которая называется таблицей Менделеева. Золото и все прочие металлы, а также углерод, азот, кислород, фосфор, сера и др. – это примеры простых веществ, то есть химических элементов.
Результаты воздействия на эту масляную субстанцию определенных
химических элементов , используемых в производстве Жизненного Электричества (некоторые из них получаются из азотистых соединений водорода и т.д.), сходны с теми, которые можно наблюдать при непосредственном применении тепла или холода.
В последнее время интерес к данному методу в реставрации значительно возрос, главным образом в связи с появлением компактных переносных универсальных приборов, способных анализировать любые образцы размером от 10 мкм и определять
химические элементы практически с любым атомным номером. Такие анализаторы имеют высокое пространственное разрешение (как по поверхности, так и по глубине), а само исследование может проводиться без какой-либо предварительной пробоподготовки в режиме реального времени [12].
Объект неживой природы состоит из кластеров молекул определенной структуры, а молекулы состоят из атомов
химических элементов . Вещество объекта неживой природы сохраняет своё состояние за счет химических связей атомов в молекулах и кластерах молекул. Последовательность информационного воздействия и изменения свойств вещества объекта можно представить в виде следующей схемы:
В блоке 1 интегрированы девять модулей, каждый из которых состоит из учебных элементов: М-1 «Строение атома» (УЭ-1 – УЭ-6); М-2 «Периодическая система
химических элементов Д.И. Менделеева» (УЭ-7 – УЭ-11); М-3 «Химическая связь» (УЭ-12 – УЭ-14); М-4 «Агрегатное состояние. Растворы» (УЭ-15 – УЭ-17); М-5 «Энергетика химических превращений» (УЭ-18 – УЭ-20); М-6 «Химическое равновесие» (УЭ-21 – УЭ-23); М-7 «Химическая кинетика» (УЭ-24 – УЭ26); М-8 «Гидролиз» (УЭ-27 – УЭ-32); М-9 «Окислительновосстановительные реакции» (УЭ-33 – УЭ-35).
Еще одним возможным источником биогенных элементов считаются хвостатые космические странницы – кометы. Человечество обладает недостаточными знаниями об этих космических путешественницах. Немного погостив в Солнечной системе, они надолго покидают ее, уходя в Оортово облако. Биологи полагают: возникновение сложной материи может быть результатом чередований нагревания и охлаждения
химических элементов , составляющих комету. Пролетая вблизи Солнца, комета сильно нагревается, а затем, уходя в космическое пространство, быстро охлаждается. Подобная смена температур может привести к построению полимеров – комплексных соединений. Предыдущие утверждения доказаны присутствием в комете множества органических веществ. Так, может быть, комета подарила нам радость жизни, рассеяв в Солнечной системе органику!
Жизнь немыслима без источников энергии и необходимых строительных материалов (совокупности
химических элементов и их соединений), и получение всего этого невозможно без обмена сигналами и обработки информации в живой системе. Конечно, живая клетка может просто ждать благоприятного стечения обстоятельств, полностью прекращая всякую жизнедеятельность до той поры, пока не поступит пробуждающий к активной деятельности сигнал. Это древнейшая примитивнейшая стратегия выживания, доставшаяся современной жизни от первых клеток, плавающих по воле судеб в водных растворах первичных океанов Земли, а может быть еще от клеток-предков, дрейфовавших по просторам Вселенной в метеоритах и кометах. Однако такая стратегия не оптимальна, активный поиск энергии и необходимых веществ повышают шансы на выживание и размножение. Наверняка примитивнейшие (детекторы-сенсоры) реснички, усики и жгутики одноклеточных организмов трансформировались в простенькие движители, помогающие клеткам перемещаться в водной среде, тем самым совместив функции сенсора и двигателя, а позже некоторые клетки избавили свои движители от сенсорной функции. Исходя из базовой мотивации самосохранения, жизнь отдает предпочтение активному поиску энергии и веществ, пусть даже примитивнейшим способом проб и ошибок, даже без сохранения результатов прошлых проб в резервуарах памяти. Главное, чтобы эти попытки не вели к слишком быстрому истощению энергоресурсов единичной жизни. Если энергоресурсы клетки дошли до опасно низкого уровня, клеточная жизнь возвращается к еще более примитивной и древней стратегии самосохранения – к замиранию до лучших времен. Известно, что голодающий человек начинает замерзать даже при оптимальной для обычных обстоятельств температуре. Это и есть реакция организма человека по типу древнейшей стратегии, организм начинает экономить энергию.
В.П.Казначеев и Е.А.Спирин, соединяя два биогеохимических принципа В.И.Вернадского (принцип 1: биогенная миграция атомов
химических элементов в биосфере всегда стремится к максимуму проявления; принцип 2: эволюция видов в геологическом времени, приводящая к устойчивым видам, направлена на возрастание биогенной миграции атомов в пределах биосферы) с двумя биофизическими законами функционирования биосистем Э.Бауэра (законы Вернадского – Бауэра), а также принцип Реди («все живое от живого»), формулируют «предположение о том, что единство организованности монолита живого вещества определяется и существованием целостного «биосферного генома»[52]. Предположение о существовании биосферного генома имеет своим следствие второе предположение, что «специфическую генетическую память отдельностей (форм) живого вещества следует рассматривать не как отдельные изолированные линии, а как компоненты целостности»[53]. Гипотеза генетической иерархии наследования в геологической эволюции Биосферы, верхний уровень которого эксплицируется биосферным геномом, полностью соответствует системогенетической картине мира, вытекающей из системогенетики, по А.И.Субетто.
В этих условиях с течением времени человек может столкнуться с нехваткой энергии и истечением запасов ископаемых
химических элементов , необходимых для построения биомассы культурных растений и индустриальной продукции». Интересно отметить, что этот вывод сделан физиками.
Лечебные свойства минерала обусловлены его цветом и блеском. А что такое цвет и блеск? Эффекты поглощения и преломления света. Именно они в первую очередь определяют окраску минерала, а вовсе не
химические элементы , входящие в состав камня. Разумеется, есть исключения. Например, бирюзе и малахиту зеленый цвет придает медь. А иногда цвет определяется ионизирующим излучением, которому подвергался минерал в процессе образования. В пределах одного вида нередко встречаются экземпляры разных цветов. Так, минерал корунд, который по своему химическому составу является окисью алюминия, имеет две разновидности: рубин (кроваво-красные экземпляры) и сапфир (синие). Цвет камня, воспринимаемый нашим органом зрения, зависит от того, какие лучи спектра при прохождении света сквозь минерал поглотились. Каждый камень поглощает лучи определенной длины волны. В результате из камня выходит световой луч, который был преломлен.
Наша галактика входит в 5 % всех наблюдаемых спиральных галактик, остальные 95 % имеют эллиптическую или неправильную форму. В этих галактиках возникновение жизни крайне затруднено, в частности из-за малого количества тяжелых
химических элементов и высокого уровня радиоактивного облучения.
Явлением заинтересовались другие физики, которые и обнаружили, что соли урана испускают таинственные лучи, способные воздействовать на ядра других элементов. Это явление физики прежде всего попытались использовать для осуществления давней мечты алхимиков – превращения одного
химического элемента в другой.
В первый миллиард лет Вселенная продолжала расширяться и остывать, а вещество силой гравитации стягивалось в массивные конгломераты, которые мы зовем галактиками. Их сформировалось почти сто миллиардов, в каждой – сотни миллиардов звезд, в ядрах которых шел термоядерный синтез. Эти звезды, масса которых была примерно в десять раз больше массы Солнца, создавали в своих недрах давление и температуру, при которых вырабатываются десятки
химических элементов тяжелее водорода, в том числе и те, из которых состоят планеты и всевозможная жизнь на них, если она есть.
Именно на этом этапе в игру вступил Георгий Гамов. Гамов познакомился с моделью нестационарной Вселенной еще на студенческой скамье, когда учился у Фридмана. По окончании Ленинградского университета он посвятил себя ядерной физике и выполнил несколько классических работ, в частности построил теорию альфа-распада и предложил капельную модель ядра. Впоследствии он эмигрировал и в своих исследованиях полностью переключился на астрофизику. Основываясь на работах Леметра, Гамов начал поиск решения проблемы возникновения в Большом взрыве окружающих нас
химических элементов .