Вихроны. Иллюстрированное издание

Александр Шадрин, 2013

Поиск дираковских монополей ведётся научным мировым сообществом уже более 80 лет и пока безрезультатно. Однако эта проблема остаётся актуальной и в последние годы для объяснения оригинальных результатов работ М. И. Солина, С. В. Адаменко, Л. И. Уруцкоева, А. В. Вачаева, К. Р. Шоулдерса, А. Росси и других в области (LENR) низкоэнергетического синтеза ядер тяжёлых атомов химических элементов. Результаты этих работ необъяснимы с позиций современных теорий атомного ядра. И есть серьёзные предположения о причастности некоторых «тяжёлых» магнитных монополей к этим процессам. К необъяснимым относятся также и механизмы природы образования спина и массы микрочастиц, структура полей гравитации и электростатики, сверхпроводимость, сверхтекучесть и звук. В данной книге предложено иное определение свойств магнитных зарядов, отличающееся от их представления П. Дираком. Вихроны – так названы эти периодически изменяющиеся и самодвижущиеся магнитные и гравитационные заряды. Вихроны – это микровихроны, макровихроны и гипервихроны. Продукты микровихронов – это элементарные частицы, ядра химических элементов, электроны, фотоны, фононы и т. д. Продукты макровихронов – это волноводы из потенциалов, вихревые токи, детонация и ударные волны взрывов, производство-синтез ядер атомов таблицы Менделеева, индукция Фарадея, электрические токи, звук, сверхпроводимость и сверхтекучесть, атмосферные линейные и шаровые молнии, спрайты, эльфы, плюмы-флюиды и плюмы-плазмы в мантии Земли, вихревые гравитационные выбросы и т. д. Продуктами гипервихронов является эволюция некоторых звёзд в планеты, а также гравитация и инверсия полюсов их магнитных полей. Определены свойства вихронов, с помощью которых удаётся объяснить указанные эксперименты, а также и другие явления природы – от рождения и аннигиляции противоположных частиц, структуры атомных ядер, фотонов, электронов, атомов, от молекул до шаровых молний, сверхпроводимости, землетрясений, вулканизма, инверсий магнитного поля планет и Солнца, природы его «чёрных пятен», грануляции фотосферы и магнитных зарядов на его поверхности. Введены понятия центральной активной гравитации ядра и пассивной ядерно и атомно-молекулярной массы вещества, окружающего это активное ядро, как аналоги противоположных зарядов в электричестве и магнетизме. Книга рассчитана на широкий круг читателей: от школьников до академиков.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Вихроны. Иллюстрированное издание предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Глава 2. Микровихроны и элементарные частицы

2.1 Атомный фотон

Впервые зарегистрированные микроскопические проявления этой формы материи, т. е. наличие фотонов в потоках видимого и цветного света были обнаружены с помощью фотоэффекта, т. е. явления природы, связанного с резонансным поглощением одного фотона атомом и последующим испусканием свободного электрона. Другими микроскопическими характеристиками идентификации фотонов служат его параметры — частота, спин, длина волны, поляризация, скорость света, время жизни и т. д. Основные макроскопические параметры коллективного переноса свойств фотонов — это фронт волны, плотность потока частиц, волновые эффекты, давление света, яркость и т. д. Достоверно установлено для фотонов радиоволн, что на расстоянии от источника не более 1/6 длины волны преобладают поля[50] индукции от стационарных источников (антенн передатчиков), и это пространство условно считается зоной индукции. На более далёких расстояниях преобладают поля излучения вихревых источников — поля вихронов, создающих электромагнитные волны (ЭМВ).

Динамическая структура полей излучения, фазового пространства атомного фотона и фотонов других электромагнитных квантов[51] до сих пор неизвестна. Механизм их излучения и поглощения, самодвижение и самоподдержание стабильности частоты, бесконечное время жизни, длина пути в пустоте космоса и «красное» смещение, а также структура фазового объёма — это ключ для понимания всей Структуры Мироздания Вселенной. До сих пор ни одна теория, т. е. ни классическая электродинамика, ни квантовая, ни модифицированные уравнения Максвелла, ни толстые книги по оптике, ни многочисленные современные трактаты по лазерам, световодам и волноводам, радиоволнам и антеннам, ни публикации по элементарным частицам, атомному и ядерному излучению несмогли ответить на следующие вопросы:

— какие физические процессы отличают зону индукции от зоны излучения и волновой зоны

— в чём состоит механизм природы индукции, излучения и волновой зоны фотона

— каков механизм взаимной индукции вихревых электрических и магнитных полей

— в чём заключается механизм физической природы связи постоянной Планка со спином микрочастиц

— какова природа спина и магнитного момента фотона

— почему спин у электрона полуцелый, а у фотона равен целой постоянной Планка

— чем отличается механизм безмассового самодвижения фотона от движения частиц с массой

— что отличает две формы энергии в виде движения от вида покоя

— почему размер области излучения атомного или ядерного фотона на много десятичных порядков меньше его длины волны

— что может вызывать вращение электромагнитных полей в фазовом объёме фотона, о чём свидетельствуют спин, форма поляризация и постоянная Планка

— почему скорость света в пустоте вакуума не зависит от состояния движения и скорости источника его излучения, всегда постоянна для всего спектра электромагнитных волн

— фотон излучается в связи с изменением состояния электрона в поле атомного ядра, а что излучает антенна радиопередатчика

— можно ли как то связать такие различные явления, как механизм излучения антенной радиоволн с механизмом разогрева вихревыми токами сплошных веществ в микроволновой печи, с наведением э.д.с. индукции во вторичных обмотках трансформаторов, с вихревыми токами в сердечниках магнитопроводов, с вихревыми потенциалами в ускорителе электронов в бетатроне

— какова структура самодвижущегося и самоподдерживающегося фазового микропространства фотона

— почему фотоны могут быть поляризованными, в чём природа этого эффекта

— что за механизм отвечает за форму поляризации — линейную, круговую, эллиптическую и т. д.

— почему фотоны движутся прямолинейно от источника, а при отражении от определённых тел — угол падения равен углу отражения

— каков механизм поглощения электроном фотона в атоме, ведь длина его волны много больше размера даже связанного электрона

— каков механизм деления фотона на два в поле атомного ядра с образованием массы электрона и позитрона, или пары мюонов

— какова природа механизма возникновения дебройлевской волны движущимися микрочастицами, при каких условиях и с какой частотой происходит отрыв фотонов де Бройля от этих частиц и происходит ли он вообще, т. е. проблема сброса индуктированной энергии

— каков механизм образования адронов на коллайдерах из встречных пучков электронов и позитронов с пороговой энергией ненамного превышающей 1 Гэв

— чем отличаются структуры фазовых объёмов мезонов от фотонов по своей структуре, ведь спины у них целочисленны, т. е. 0 или 1

— почему масса покоя электрона в точности равна энергии фотона, который излучается при исчезновении его массы, каковы свойства этого фотона, какова степень и форма поляризации

— каков механизм аннигиляции пары частица-античастица, приводящий в конечном итоге к образованию фотонов и каковы свойства этих конечных фотонов, степень и форма поляризации

— какой механизм превалирует в «красном» смещении космических фотонов из нескольких известных.

Атомный фотон обладает внутренними и внешними физическими свойствами. К внутренним свойствам следует отнести частоту и целочисленный спин фотона, поляризацию, отсутствие массы и заряда покоя, бесконечное долгое время жизни, возможность проявления корпускулярных свойств, при излучении и поглощении. При этом, самым загадочным свойством фотона, конечно же, является его спин.

К внешним свойствам относятся:

— прямолинейность движения с постоянной скоростью света

— участие в электромагнитных и гравитационных взаимодействиях

— возможность неупругой передачи своей энергии полностью связанным электронам в атомах (фотоэффект) или частями, в соответствии с комптон-эффектом

— деление фотона на два с образованием электрона и позитрона (или пары мюонов) в поле атомного ядра (эффект пар — образования) при достижении им некоторой пороговой энергии

— рождение адронов на коллайдерах из ускоренных электронов с участием их дебройлевских фотонов при пороговых энергиях превышающих 1 ГЭВ

— проявление волновых свойств, при коллективном движении одинаковых и синфазных фотонов

— эффекты отражения и преломления на границе двух сплошных сред, а также явления дифракции, интерференции

— и другие известные свойства из различных диапазонов частот электромагнитных волн, например, радиочастот.

Фотоны и электромагнитные кванты из других возможных частот рождаются при переходах микрочастиц[52] в основное состояние из возбуждённого. Этот процесс возможен, как в состоянии относительного покоя, так и движущимися микрочастицами, т. е. излучением дебройлевских квантов, а также с помощью всевозможных технических средств[53] — антенны и т. д. Время жизни фотонов — бесконечно долгое в вакууме космического пространства, однако вследствие всевозможных рассеяний на электронах, атомах и молекул их срок жизни зависит от той среды, где он движется.

Тем не менее, главное внешнее свойство, которое проявляют фотоны в космосе вакуума Вселенной, связанное с бесконечно долгим сроком жизни — это некинетический перенос кванта энергии активным фазовым микропространством на бесконечно длинные расстояния, т. е. сверхтекучесть фотонов (бозонов) в условиях космоса. И, как теперь уже известно, этим свойством фотоны обязаны, прежде всего, своему спину равному единице, который показывает, что частица движется и при этом происходит полное квантовое преобразование носителя кванта индуктированной энергии. Как дальше будет показано, носителем кванта индуктированной энергии в фотоне является переменный по знаку и значению величины заряда магнитный монополь.

Каков механизм излучения фотона возбуждённым атомом?

Такие свойства фотонов, как спин, степень и форма поляризации, самодвижение, вихревые токи в сплошных средах, размер области излучения и поглощение атомным электроном фотона, электромагнитная индукция и э.д.с. самоиндукции, а также анализ круговой равновесной мгновенной орбиты, на которой происходит удержание ускоряемых электронов в бетатроне, позволяют сделать заключение о том, что всегда изменяющееся за конечный временной период (импульс напряжения или обрыв тока) электрическое поле в точках, расположенных в зоне индукции стационарного источника, производит сферообразный и многооболочечный квант-сферу вихревого потока[54] магнитных потенциалов — магнитный монополь (фиг. 2.1), т. е. магнитный заряд со своим внешним магнитным полем, носитель кванта индуктированной энергии, источник самодвижения.

Фиг.2.1 Магнитный монополь в переменном поле атомного ядра

Так рождается магнитный монополь[55], т. е. заряжается его структурная сфера. Что это значит? А это значит, что в начальный момент изменения электрического поля заряжается большая сфера из одинаковых магнитных зёрен-потенциалов, размещённых на спиралях, образующих поверхность этой сферы. В следующий момент таким же образом заряжается последовательно внутренняя сфера, но уже больших по абсолютной величине магнитных потенциалов. Так происходит зарядка магнитного монополя до самого центра.

Такой магнитный квант после прекращения изменения электрического поля в этой точке и в начале своего первичного самодвижения становиться источником рождения в зоне излучения фундаментальных вихревых частиц — электромагнитных атомных микровихронов[56].

Как это происходит? Что это за частица, как происходит её самодвижение, каковы основные её свойства?

Механизм рождение микровихрона происходит следующим образом. Для наглядности рассмотрим совмещённое объёмное поле потенциалов двух равных и противоположных точечных зарядов (фиг.2.1, справа) атома водорода — протона и электрона, т. е стационарных источников[57]. Оно графически состоит из ассиметрически[58] совмещённых сферических эквипотенциальных поверхностей с противоположными потенциалами, между которыми на равном расстоянии от этих зарядов проходит плоскость[59] с потенциалом равным нулю. Силовые линии[60] напряженности поля исходят из положительного заряда и входят в отрицательный. В момент перехода электрона из возбуждённого состояния в основное уменьшается расстояние до ядра, путём движения к нему электрона — происходит процесс изменения электрического поля в пространстве между сближающимися зарядами. Наибольшие магнитные потенциалы, образующие поверхности сфер ближайшие к центру, рождаются в самый последний момент, соответствующий кратчайшему расстоянию между зарядами. В этих точках зоны индукции и рождается сферообразный объёмный магнитный монополь микровихрона путём центрального и синфазного слияния[61] микромонополей, образовавшихся на каждом изменяющемся[62] зерне-потенциале объёма этой зоны поля. Процесс синфазного слияния-зарядки[63] в локализованном объёме атома длится весь конечный период перехода из возбуждённого состояния в основное. За это время происходит рождение магнитного заряда, т. е. рост заряда до некоторой конечной величины — прямой процесс. Поглощение аналогичного магнитного монополя через посредство взаимодействия электромонополя вихрона с полем атома в такой же точке невозбужденного атома переводит его в состояние возбуждения — обратный процесс. По завершению этого периода названный квант-сфера, квант последовательно-вихревого потока потенциалов магнитного поля начинает процесс разрядки — своё каноническое поступательно-вращательное самодвижение. Синфазно с этим процессом магнитный монополь начинает рождать волновод из электропотенциалов, т. е. вихревой последовательный поток электропотенциалов-зёрен, которые он устанавливает стационарно в пространстве в строго геометрическом порядке (фиг.2.2), и противодействующий его разрядке переменный электрический монополь — это и есть активный фазовый объём (1/4 длины волны) первичного атомного микровихрона.

Фиг. 2.2 Схема волновода фотона из зёрен-электропотенциалов.

Этот противодействующий индуктированный электромонополь в движении одновременно возбуждает-заряжает в фазовом объёме на удалении ¼ длины волны от узла (начала разрядки) микровихрона собственное встречное вторичное магнитное вихревое поле — сферу заряжающегося и движущегося вторичного противоположного и аналогичного магнитного монополя. Этот вторичный магнитный монополь также, как и первичный сразу же начинает производить свою часть волновода из электропотенциалов, начиная с ¼ длины волны. Эта сфера вторичного вихревого потока магнитных потенциалов переменна по величине и полностью идентична первичному, но противоположна по направлению силовых линий (по знаку) — свидетельство закона сохранения средней энергии, т. е. поочерёдная смена кванта индуктированной энергии со знаком плюс на квант со знаком минус. Далее, весь заряд первичного магнитного кванта через посредство синфазного противодействующего электромонополя переходит во вторичный, но с противоположным знаком — так рождается уже вторичный микровихрон оптического фотона водорода. Итак, зарядка — рождение сферы магнитного заряда, разрядка — это его самодвижение с производством волновода из зёрен-электропотенциалов, при этом процессе происходит рождение синфазного переменного и противодействующего электрического и магнитного монополей. Особо следует отметить, что во время зарядки противоположного магнитного монополя противодействующим электрическим, не происходит процесса возбуждения этому процессу соответствующего электромонополя. Время в обоих процессах одинаково и равно времени перехода атома из возбуждённого состояния в основное — это ¼ периода фотона.

Таким образом, если представить промежуточный момент времени на 1/8 периода в фазовом объёме вихрона после начала самодвижения первичного монополя, то возникает вторичный магнитный монополь в точке 3/8 периода через посредство противодействующего первичному электрического монополя, который уже равен половине первичного заряда — это единственный момент существования в вихроне симметричного магнитного диполя. По мере изменения этих взаимодействующих вихревых полей и заряжается противоположный магнитный монополь, опережающий первичный на ¼ периода. Через ¼ периода первичный магнитный монополь исчезает, но на ½ длины волны фотона заряжается такой же с противоположным знаком. И теперь уже процесс опять повторяется, но с производством противоположных по полярности электрических потенциалов спирали волновода и на новом, т. е. 1/2 длины волны — месте в пространстве и уже в зоне излучения. Всё это происходит в активном движущемся локализованном вихрево-полевом микрообъёме, основное свойство которого — это свободное самодвижение в пространстве. Это и есть свободный биполярный атомный микровихрон, активный объём которого в четверть волны содержит два переменных и противоположных магнитных, один противодействующий разрядке первичного синфазный переменный электрический монополь плюс часть волновода из электропотенциалов.

Рассмотрим этот процесс более детально на одном из множества зерен-потенциалов атомного объёма изменяющегося электрического поля. Когда наступает начало изменения[64] этого электрического поля, вокруг каждого из зёрен-потенциалов возбуждается сферический вихревой поток спиралей потенциалов-зёрен магнитного поля, который продолжает прорастать в центр к зерну до тех пор, пока изменение не закончится. В начальный момент изменения формируется внешняя сферическая спираль магнитных зёрен в среднем одного значения большего диаметра (фиг.2.1, слева), которая при дальнейшем изменении постепенно переходит на меньший диаметр сферы — процесс зарядки. Наименьшему диаметру сферы соответствует окончание изменения электрического поля и максимальное значение магнитных потенциалов. Это соответствует процессу — магнитный монополь зарядился до некоего суммарного максимально возможного магнитного заряда. Магнитные зёрна-потенциалы такого объёмного сферического вихря этого магнитного монополя, непрерывно уложенные спиралями разного диаметра на концентрических сферах разного радиуса, по структуре максимально приближены к центральному электрическому зерну-потенциалу. Это приближение зависит от скорости, времени изменения электрического поля[65], а также плотности его зёрен-потенциалов этого поля — эти параметры и определяет величину созданного магнитного заряда и размер сферы его объёма. Тогда соответственно и частотные характеристики движения спирали на сферах большего диаметра будут отличаться от частот на спиралях меньшего диаметра в сторону увеличения. Этот вихрь во время такого изменения электрического поля сферически сжимается[66] внутрь вдоль радиусов своих силовых линий. Причем, чем больше скорость изменения и значения параметров поля, тем меньше достигаемый радиус сферы, и тем больше значения и плотность потенциалов-зёрен (компрессия энергии материи в форме любого типа монополя) магнитного поля на единицу длины спирали и их частота. При этом следует отметить, что наиболее важную роль занимает процесс генерации плотности зёрен-потенциалов на единицу длины спирали волновода. В элементарных процессах микроматерии плотность компрессии энергии заряда может увеличиваться лишь за счёт слияния одинаковых магнитных монополей в локализованном объёме атома или ядра в момент их зарядки. В процессах же с участием электроразрядных кластеров (молнии) атомно-молекулярного вещества или специальные технические электроразряды между двумя электродами, этот параметр магнитных монополей, определяющий аккумуляцию его заряда-энергии в единице объёма, может увеличиваться, как за счёт плотности тока в импульсе зарядки, так и за счёт максимума напряжения этого импульса. Не менее важным параметром в таком процессе является фронт нарастания или разрыва[67] тока импульса, что приводит к уменьшению охваченного процессом объёма пространства. А чем меньше объём и интенсивнее процесс, тем ближе и плотнее друг к другу рождаются синфазные магнитные монополи, тем больше слияний монополей, тем сильнее компрессия энергии в единице объёма, в котором ещё может происходить такое слияние. Другими словами, такому же процессу способствует укорочение фронта импульса напряжение, который отвечает за уменьшение объёма локализации рождающихся монополей, т. е. опять же уплотнение вихревых потенциалов. Такой процесс приводит к рождению «тяжёлых» и «сверхтяжёлых» магнитных зарядов[68].

Более наглядно представить монополь, как сферически объёмную спираль магнитных потенциалов можно следующим образом. Возьмём металлический провод в виниловой оболочке, т. е. обычный электрический провод. Теперь этот провод плотно намотаем на сферу одного диаметра, а затем порежем весь провод на одинаковые дольки-зёрна, которые будут играть роль двух потенциалов. Зерно из металла будет служить как магнитный потенциал определённого значения, соответствующий одному радиусу сферы и данному моменту изменения электрического поля. А окружающая его сфера виниловой оболочки будет служить опорным нулевым потенциалом данной точки пространства. Затем спираль переходит внутрь на меньший радиус. Следующая сфера меньшего диаметра образована таким же образом, но и толщина такого провода становится меньше. Каждая сфера определённого радиуса, образованная спиралями из магнитных зерен-потенциалов одинакового значения по абсолютной величине, является своеобразной ячейкой памяти, которая запоминает значение и знак того состояния электрического зерна-потенциала, при котором она образовалась. Таким образом, основное и главное свойство магнитного монополя (свойство ноль) — это вихрево-полевое запоминание всей истории изменения, скорости и времени, величины и направления изменения электрического поля и тока в точке-объёме, т. е. он носитель и переносчик информации[69].

Наконец, поле источника перестало изменяться, и образовавшийся монополь больше ничто не связывает с первичным электрическим зерном, так как в этот момент изменение электрического поля около данного зерна-потенциала равно нулю. Всё множество таких магнитных микромонополей сливается (ток зарядки) в один в зоне индукции таким образом, что каждая сфера потенциалов занимает центрально[70] только своё место, увеличивая плотность потенциалов-зёрен на единицу длины спирали данного радиуса. Итак, первое свойство синфазных[71] магнитных микромонополей — слияние, но лишь в момент зарядки. Если магнитный поток потенциалов суммарного вихря достигает некоторого минимального квантового предела[72], то образуется элементарный магнитный заряд уже способный к свободному самодвижению. Это второе свойство — свободное самодвижение-разрядка (видео 2.1) элементарного монополя вихрона с рождением волновода (видео 2.2) спирали[73] электропотенциалов разного диаметра, созданных им. Этот процесс всегда сопровождается возбуждением противодействующего разрядке электрического монополя, выполняющего вспомогательную роль в процессе перезарядки кванта магнитного монополя в свободном вихроне для сохранения среднего значения энергии при полном квантовом преобразовании этого носителя индуктированной энергии в частице со спином равным единице.

Большая заслуга в первичных исследованиях пространственно-временного развития импульсного электрического разряда в вакууме, газе, жидкости и твёрдых телах принадлежит Воробьёву А. А., Ушакову В. Я., Месяцу Г. А. и другим учёным Томско-сибирской школы высоковольтников.

Предложенную здесь структуру формирования в пространстве волновода-трека движения магнитного монополя подтверждают и экспериментальные исследования этих авторов и в частности работы В. Я. Ушакова. В этих исследований был установлен ряд уникальных результатов с фотографиями разрядов с высоким разрешением, на которых видны спирали начала вихревых токов на волноводе, оставленного движением магнитного монополя.

Экспериментальные исследования природы и основных закономерностей импульсного электрического пробоя жидкостей.

В 1962 г. В. Я. Ушаковым в Энергетическом институте им. Г. М. Кржижановского (ЭНИН) были начаты исследования пространственно-временных закономерностей пробоя жидкостей с использованием электронно-оптической аппаратуры, обладающей большим временным и пространственным разрешением.

Особенности электрического разряда в жидкостях (многообразие и сложность явлений, малые характерные размеры ~ 10 мкм, высокие скорости развития ~105…107 см/с) позволяют выделить ряд требований, предъявляемых к методам высокоскоростных оптических измерений: 1) длительность импульсов подсветки не более ~10…0,1 нс; 2) час-тота съемки в кадровом режиме ~109…108 кадров/с; 3) изменение интервала между кадрами в широком диапазоне (~1…100 нс); 4) высокая точность синхронизации кадров; 5) энергия светового пучка должна быть достаточной для получения последующих кадров с соответствующей задержкой; 6) высокое качество пучка для получения надежных количественных результатов.

В результате были получены весьма характерные кадры этих процессов (фото 2.1). Было установлено, что лидерный процесс в жидкостях в длинных (миллиметр и более) разрядных промежутках с неоднородным полем формируется за счет преобразования первичных каналов, представляющих собой тонкие (2…4 мкм) плазменные каналы с малой электропроводностью.

Эта фотография — классический пример развития вихревых токов на оставленном треке зёрен-потенциалов, созданных магнитным монополем.

Далее, вначале движения-излучения и изменения-индукции монополей-вихрей в этой области пространства электрического поля, формируется зона излучения, т. е. самодвижение-изменение двух ортогональных и синфазно меняющихся монополей — магнитного и противодействующего ему электрического, которые индуктивно связаны друг с другом и в процессе разрядки представляют единое целое.

Такой переменный магнитный монополь становится носителем кванта индуктированной энергии и «транспортом» для переноса параметров первичного кванта. Другими словами, при самодвижении-разрядке он становится вихроном и развёртывает в пространстве[74] всю историю (информацию) изменения электрического поля в точке, где он родился. На ¼ длины волны (пучность) от первоначального местоположения первичные монополи — магнитный и противодействующий электрический исчезают, и через мгновение уже на ½ длины волны (узел) возникает вторичный монополь, идентичный по величине (магнитный) и противоположный по знаку первичному. Процесс повторяется заново, но с противоположным знаком.

Самодвижение-разрядка монополя происходит из точки-узла по сферической спирали возрастающего радиуса и уменьшающейся частоты — продольное движение вперед со скоростью света. Радиус сферы монополя, при этом, начинает увеличиваться, а значение величин электропотенциалов на треке уменьшаться по абсолютной величине и становятся равными нулю на середине пучности трека — ¼ длины волны. Вращение сферического магнитного монополя происходит со скоростью много больше световой и, если смотреть снаружи на него, то будет восприниматься только продольное движение со скоростью света увеличивающегося в диаметре спиралевидного тора (видео 2.3). Во время движения он изменяется в диаметре, уменьшается по заряду и квантует[75] пространство спирали, откладывая электрические зерна-потенциалы на ней в соответствии со своей памятью и в строго геометризованном порядке. При разрядке вначале движения монополя от узла откладываются потенциалы максимального значения. На ¼ длины волны (пучность) откладываются нулевые по значению потенциалы. В момент зарядки противоположного магнитного монополя происходит аналогичный процесс с производством спирали волновода, но уже противоположного знака — волновод в полволны электрически зарядился до двойного значения разности потенциалов. Активный объём вихрона в начальный момент разрядки размерностью в четверть длины волны содержит два таких тора с минимальным и максимальным радиусом. Однако максимального значения (зарядка) магнитный вторичный монополь достигает лишь в точке половины периода частоты фотона, т. е. в точках соприкосновения (узлы) двух сфер спиралей волновода. Это третье свойство монополя вихрона: квантование зёрен-электропотенциалов при свободном движении в свободном вакуумном пространстве, т. е. развёртка в пространстве своей истории рождения.

В момент 1/8 периода от узла в активном в четверть волны микрообъёме вихрона уже существуют по два одинаковых по заряду магнитных монополей, но противоположной направленности, причём противоположный заряжается переменным электрическим монополем, который создаёт первичный. Вторичный монополь заряжаясь начинает строить от ¼ длины волны в этом же объёме спираль электропотенциалов противоположной полярности (фиг.2.2). Это четвёртое свойство вихрона: самоиндукция противоположного монополя и создание свободного биполярного вихрона[76] — бозонного магнитного биполя, формирующего такую микрочастицу со спином равным единице, как фотон электромагнитного кванта — бозон.

В пространстве, после выхода вихрона из первого периода, остаётся след-фантом из четырёх полусфер-спиралей, на которых размещены электропотенциалы-зёрна разных значений[77] (Фиг.2.2, справа) и знаков по полярности. Самые большие значения потенциалов по абсолютной величине и с большей частотой размещены на спиралях наименьшего диаметра[78]. Затем они уменьшаются до нуля в середине пучности полусферы, после чего начинают увеличиваться по значению, но с другой полярностью. Положительные и отрицательные зёрна-электропотенциалы геометрически фиксированы в пространстве относительно друг друга, т. е. любое их смещение относительно другого вызывает магнитное поле с таким направлением действия, которое направлено на восстановление первичного положения. Таким образом, их геометризованная фиксация в пространстве охраняется защитным магнитным полем. Однако при определённых условиях последовательно-синхронного смещения таких зёрен ¼ длины волны спиралей возбуждается[79] первичный магнитный монополь, т. е. возможен и обратно-последовательный процесс возрождения из части волновода микровихрона.

Движение конкретного свободного микровихрона с образованием кванта-носителя индуктированной энергии характеризует его свойство рождать микрочастицу с конкретным спином. В данном случае спин фотона равен единице[80], а численно для элементарных частиц он определяется постоянной Планка. Итак, пятое свойство, характеризующее вихрон — рождать конкретную микрочастицу с определённым спином. Механизм образования спина в САП неизвестен. Можно дать следующее определение природы спина микрочастицы — этот параметр характеризует степень квантовой завершённости преобразования индуктированной электромагнитной энергии материи, который определяет в зависимости от внутренних свойств микровихрона форму и вид[81] движения микрочастицы, т. е. образуется замкнуто-колебательный или открытый самодвижущийся её фазовый объём. Различные по типу, т. е. замкнутые или свободные микровихроны способны образовывать микрочастицы со спином равным единице (фотон), с полуцелым спином (лептоны), а также микрочастицы с нулевым спином — мезоны (пионы, каоны), как промежуточные состояния распадающихся ядерных оболочек. Причём вихроны, образующие замкнуто-колебательные фазовые объёмы микрочастиц, вместо противодействующего электрического монополя индуктируют в них гравитационный монополь — новый носитель индуктированной энергии материи покоя.

Таким образом свойства микровихронов становятся определяющим фактором образования стабильных химических элементов в процессе их зарождения, распада и стабилизации на долгом пути от ядра Земли к её поверхности.

Описанная выше схема формирования и квантования зерен-электропотенциалов фазового объёма фотона существенно упрощена и весьма грубо разрывно-последовательно показывает основные вклады участвующих процессов. Это сделано для упрощения понимания всего процесса в целом, не углубляясь в детали. Реально в природе этот процесс происходит гораздо сложней[82] и картина динамики образования фазового объёма даже фотона в деталях несколько отличается от уже рассмотренной. Квантование потенциалов реального электромагнитного пространства-трека фотона происходит синфазно-последовательно с момента изменения электрического поля еще в зоне индукции около источника[83] в момент зарядки монополя, а по скорости переноса потенциалов полей конкурируют два процесса — статической индукции и вихревой генерации зёрен-электропотенциалов. Первый процесс формирует внешнее поле источника, второй — внутренние поля структуры микрочастиц. Скорость статической индукции потенциалов от постоянных источников во много раз превышает скорость вихревой генерации потенциалов, т. е. скорость света во много раз меньше скорости распространения постоянных электрических полей. Не затронуты и вопросы прямых и обратных процессов жизни потенциалов-зёрен — у стационарных зарядов они движутся со скоростью больше скорости света, а магнитный заряд сам движется со скоростью больше скорости света, но фиксирует геометрически покоящиеся в пространстве потенциалы — это очень важный момент в природе установки полей макро и микроисточников. Моменту начала разрядки противодействует индуктируемый электрический монополь. Это значит, что именно в этот момент его внешнее электрическое поле имеет наиболее протяжённый радиус дальнодействия и значение, которое способно наиболее эффективно взаимодействовать с окружающими полями, например, с полем атомного ядра — пар образование. Полностью магнитный монополь разряжается на ¼ пучности длины волны, оставляя на окружности максимального диаметра трека нулевые потенциалы. Противодействующий такой разрядке вначале этого процесса электрический монополь, в этих точках на треке ¼ также исчезает. Электрическому монополю в свободном вихроне отводится основная роль взаимодействия с окружающими полями при движении через вещество — только он способен затормозить и остановить, «вморозить» в плазму, создать квантовый переход из магнитного состояния материи в гравитационную. Самое главное заключается в том, что с момента начала разрядки магнитного монополя, индуктируемый противоположный монополь, движущийся впереди на ¼ периода, практически невидим для окружающих полей и вещества. Это позволяет для «тяжёлых» магнитных монополей свободных микровихронов определённой длины волны (от 5 до 20 микрон) вихронов беспрепятственно проникнуть вглубь атомного ядра и ионизировать его микрочастицы, составляющие внешние оболочки. Этот же монополь является ответственным за отличие комптон-эффекта от атомного фото-эффекта. Другим независимым параметром вихрона, позволяющим косвенно зарегистрировать акт пролёта магнитного монополя в проводящем веществе, является волновод из электропотенциалов, вдоль которого по его спиралям идут вихревые электрические токи. Существует ещё много других параметров, усложняющих картину создания наглядного образа реального самодвижения фотона. Одним из них является механизм преобразования кванта спиралей магнитных потенциалов, размещённых на сферической поверхности одного радиуса, в одно зерно-потенциал определённого значения и знака, строго размещённого в одной точке трека волновода электрического монополя. Другими параметрами, которые намеренно не рассматриваются в таком изложении, это картина векторного, динамично изменяющихся магнитного (в момент разрядки) и электрического монополей и динамически меняющаяся структура внутренних и внешних полей последнего. Рассматриваемый механизм самодвижения магнитного монополя процесс автономный, т. е. движение фотона со скоростью света — это, по сути, электромагнитный ток в пространстве без энергетической внешней подпитки и на него идут затраты только собственно-накопленной энергии первичного кванта, которые заставляют фотоны, прилетевшие из далёких галактик, «краснеть». Такой вид квантово-пульсирующего движения, который задаётся магнитным зарядом, в принципе отличается от корпускулярного кинетического движения частицы, обладающей массой, например электрона, движущегося со скоростью близкой к скорости света.

Таким образом, свободный микровихрон фотона — бозонный магнитный биполь, можно назвать создателем фазового объёма кванта атомного фотона, т. е. квантов электромагнитных волн всего известного диапазона. Кроме того, его можно определить и как самодвижущийся микровихревой магнито-электрический объём, в котором пульсируют два сменяющих[84] друг друга противоположных магнитных монополя через посредство противодействующего первичному электрического. Помимо этого они ещё производят волновод, в котором строго геометрически зафиксированы в пространстве покоящиеся положительные и отрицательные электропотенциалы.

Магнитный монополь вихрона в отличие от электрического не взаимодействует[85] с веществом среды в которой движется, в том числе и в металле, в котором он также движется со скоростью света. Если бы не сопровождающий его всюду при разрядке противодействующий электромонополь и всегда оставляемый след-волновод из зёрен-электропотенциалов, то его никогда бы не обнаружили и не могли бы идентифицировать. Косвенно его регистрации способствует механизм преобразования кванта спиралей потенциалов каждой сферы одного радиуса в одно электрическое зерно-потенциал определённого знака и значения, уложенное в строго отведённое место на волноводе, а также противодействующий разрядке электромонополь, способный к резонансному захвату полем атома, и переводом последнего в возбуждённое или ионизированное состояние, а при превышении порога энергии микровихрона в 1022 Кэв — рождение пар. В момент, когда магнитный монополь находится в узлах волновода фотона, в объёме вихрона отсутствует электрический монополь — в этот момент он вообще невидим. Электрический монополь вихрона, в отличие от магнитного, периодически исчезая на ¼ периода и появляясь лишь в другом месте его фазового объёма уже на ½ периода с переменными значениями знака и абсолютной величины, периодически взаимодействует с встречающимися полями вещества, через которые он проходит. Эти взаимодействия, например, приводят к следующим эффектам:

— с электрическим полем атомного ядра — фотоэффект, возбуждение и пар образование

— полем свободных электронов — комптон-эффект.

Волноводы из электропотенциалов всегда остаются в веществе после прохождения в нём магнитного заряда. Если в веществе, например, стекло, нет подвижных, даже хотя бы локально подвижных электрических зарядов (электроны), то это вещество прозрачно для магнитных зарядов, т. е. для фотонов. Если вещество имеет атомы, которые излучают резонансные фотоны, то такие фотоны будут поглощаться веществом, а в целом оно будет непрозрачно для них. Если в веществе присутствуют свободные электроны, то идут синхронные по длине и диаметру проводника короткопробежные вихревые электрические токи вдоль волноводов, а вещество в целом будет нагреваться. Такие же процессы происходят с «тяжёлыми» магнитными зарядами СВЧ фотонов. Ось вихрона, как осциллирующего электромагнитогироскопа, опирающегося на потенциалы, является постоянно ориентированной в пространстве и определяет форму и степень поляризации фотона — шестое свойство.

Таким образом, процесс самодвижения фотона — это движение свободного вихрона с опорой на электропотенциалы трека фотона в фазовом объёме, которого вторичный пульсирующий магнитный монополь, также как и первичный, продолжает процесс непрерывного геометрически упорядоченного квантового производства этих опорных электрических зёрен-потенциалов (положительных и отрицательных) на новом месте в пространстве. Самодвижение свободного фотона обусловлено продвижением пульсирующего и переменного по знаку вихрона с образованием спирального волновода электрических потенциалов фазового пространства, через посредство этих потенциалов, опирающихся на протекторное магнитное поле.

Зона излучения формируется сразу же после окончания периода зарядки магнитного монополя за зонойиндукции, т. е. от 1/8 до четверти длины волны. Стационарным микроисточником, в данном случае, является связанный и возбуждённый атомный электрон. На границе зоны индукции этого источника с зоной излучения рождается вихрон вследствие начала движения магнитного монополя. Перенос вихревого атомного кванта потенциалов[86] или его воспроизводство на новом месте производится уже вихроном — это процесс самодвижения фазового объёма фотона и перенос элементарных электрического и магнитного зарядов — это седьмое свойство.

Коллективное синфазное движение множества одинаковых вихронов в разные стороны от источника образует суммарный в каждой точке поля синфазный фронт потенциалов электромагнитной волны и превращается в движущееся[87] волновое электромагнитное поле этого источника[88] — это восьмое свойство. Таким образом, коллективы синфазных квантов фотонов образуют волновую зону электромагнитных волн.

Рассмотренные выше процессы происходят во временном интервале и микрообъёме пространства, за который произошла зарядка первичного магнитного кванта, за такое же время разрядки этот монополь микровихрона успевает совершить каскад поступательно-вращательных спиралевидных движений с образованием ¼ длины волны фазового пространства фотона и исчезнуть из него. Такое поступательно-вращательное движение магнитного монополя ограничивает продольную скорость движения микровихрона световым пределом — это девятое свойство вихрона, определяющее одну из основных фундаментальных констант — скорость света. Поэтому движение фотонов резко отличается природой механизма своего самодвижения от движения корпускулярных частиц с массой покоя, т. е. от кинетического типа движения и тем самым определяет безмассовый тип движения фотона. Это движение отличается и от движения безмассовых зёрен-потенциалов при механизме создания полей стационарных источников гравитационных, электрических и магнитных зарядов.

Продуктами вихревого тока магнитных зарядов в собственном фазовом пространстве вихрона является геометрическое распределение электропотенциалов (регуляризация или геометризация) на фазовом пространстве трека фотона, длина которого в космосе только в её видимой части достигает 1028 см. На это идёт затрата энергии заряда магнитного монополя. В результате при движении в космосе происходит «красное» смещение в фотоне, т. е. частота автоколебаний уменьшается, длина волны увеличивается. Поэтому и появляется «реликтовое» излучение, изотропно заполняющее пространство Вселенной. В случае движения в невещественном пространстве, этот трек фотонов с фиксированной геометризацией электрических потенциалов «консервируется и замерзает», образуя тонкую (фиг.2.3)

Фиг. 2.3 Трек фотона

и весьма длинную нить волновода-следа этого кванта. Период полураспада этих потенциалов зависит от условий их нахождения и движения в том или ином пространстве, а также формы существования — части шнура волноводов или всей длины трека движения космического фотона (1028-1026 см и далее в невещественное пространство). Длиноволновые треки «тяжёлых» фотонов, образованные мощными магнитными зарядами от звёзд и вышедшие за пределы нашей Вселенной могут рождать мощные и более длинные треки. Образовавшийся в невещественном пространстве аморфный и выше определённый электромагнитный трек-пространство фотона, впоследствии сворачивается в сферический клубок и становится ядром ЧСТ вращающейся нейтронной звезды или квазара. Это десятое и, пожалуй, вселенское свойство микровихрона — рождение чёрных сферических тел (ЧСТ) в невещественном пространстве за пределами нашей Вселенной, в её «атмосфере».

И именно здесь уже можно ответить на вопрос — откуда взялось такое огромное количество электромагнитной и корпускулярной материи в нашей Вселенной[89]? Вся видимая и осязаемая материя — это совокупность геометрически фиксированных в пространстве зерен-электропотенциалов и гравпотенциалов, построенных свободными и замкнутыми вихронами с различной плотностью размещения.

Ответ — только один высокочастотный[90] вихрон, проникший в область невещественного пространства, способен произвести одно ядро Солнца, т. е. то нейтральное, гравитационно очень тяжёлое ядро, которое распадаясь и минуя стадии нейтронной звезды, тёмных карликов и т. д., вспыхнет фотонным светом звезды, не сразу, сначала взрывами сверхновых, затем постоянно, а выработав всю длину названного трека-волновода запасённых зёрен-потенциалов в производство фотонов и микрочастиц, превратится в твёрдый сферический остаток смеси наработанного им атомно-молекулярного вещества различного химического состава мёртвой планеты типа Луна.

Если этот фотон длинноволновой[91], или образован во время сильных разрядов молнии в атмосфере планет, или прорвавшийся сквозь фотосферу Солнца гигантский свободный и очень длинноволновой электромагнитный макровихрон, то в невещественном пространстве за пределами нашей Вселенной рождаются существенно большие по размерам чёрные сферические тела, которые, возвращаясь в нашу Вселенную, распадаются в течение многих миллиардов лет без излучения, однако по истечении этого срока они способны излучать лишь длинноволновые[92] фотоны и никогда не образуют корпускулярные частицы атомно-молекулярного вещества — это ядра квазаров и квазагов, которые и создают тёмную материю.

Все вышеназванные и внешне проявляемые фотоном свойства обусловлены всего лишь внутренними свойствами одного определённого и свободного вихрона[93] — это переменная частота спиральных волноводов и частота фазовая, величина значений и полярность электропотенциалов, плотность их размещения на единицу длины волновода, два переменных пульсирующих магнитных и один противодействующий электрический монополь, их тип и форма поляризации, ориентация оси пульсирующего переменного магнитного вихря.

Итак, схему внутренних процессов в фотоне, побуждающих его к свободному движению даже в вакууме можно также представить, как начало разрядки сферы магнитного заряда из узла фазового объёма с индукцией противодействующего процессу этой разрядки электрического монополя путём пространственно-геометрической установки его зёрен-потенциалов до пучности в четверть длины волны и зарядки сферы противоположного магнитного монополя с началом в четверть и концом в узле, т. е. половины длины волны. Затем этот процесс повторяется, но с производством на участке от половины до трёх четвертей длины волны противоположных по знаку зёрен-электропотенциалов.

Рассмотренная структура локализованного и свободного фазового микропространства самодвижущегося фотона позволяет связать воедино все наблюдаемые явления взаимодействий фотонов в микро — и макромире, а также объяснить и связать его внутренние и внешние физические свойства. Именно такая же структура из геометрически регуляризованных электромагнитных потенциалов, рожденных движущимися замкнутыми вихронами и размещенными на соответствующих волноводах, наблюдается в мезонах и в многоуровневых оболочечных (по типу структуры внутренних слоёв луковицы) микропространствах атомных ядер, атомных электронных оболочек и элементарных частиц.

Взаимодействие вихронов с веществом. Фотоэффект, фотоатомные и фотоядерные реакции.

Ионизация внешнего электрона — это эффект обратный уже рассмотренному излучению фотона с внешней оболочки возбуждённого атома. И механизм этого эффекта также противоположен механизму излучения фотона. Здесь необходимо учитывать не только энергетический баланс, но и изменение электрического поля в конкретной точке пространства — поле атомного ядра, связывающего внешний электрон. При облучении кластера атомов газа резонансными фотонами всегда найдётся в потоке такой фотон, узел фазового объёма которого при пересечении объёма атома будет находится в критической зоне электрического поля атома и конкретного электрона. Тогда в момент начала разрядки магнитного монополя такого фотона противодействующий ему электрозаряд захватывается полем атома, останавливает магнитный заряд, который тут же преобразуется в гравитационный и образует замкнутый вихрон с неполным квантовым преобразованием носителя индуктированной энергии. Гравитационный заряд будет регенерировать магнитный заряд до тех пор пока последний не отдаст всю свою энергию на создание волноводов из электропотенциалов, поле которых переведёт электрон на одно из более энергетических состояний атома или вообще ионизирует атом. Такой процесс длится очень короткое атомное время порядка 10-8 секунды. При этом, электрон атома переходит на более дальнее расстояние — более высокоэнергетический уровень. Таким же образом происходит и ионизация электрона — фотоэффект.

Порог этого процесса самый большой для атомов, находящихся в газовом состоянии, а минимальный для атомов, закреплённых в решётке твёрдого тела. Так например, для щелочных металлов он достигает нескольких единиц электронвольт и может быть активизирован даже оптическими фотонами.

Механизм передачи частичной энергии микровихрона при комптон-эффекте происходит без его захвата электрическим полем свободного электрона путём привнесения в его волновод кластера электропотенциалов волновода проходящего сквозь него вихрона. Этим и отличается механизм комптон-эффекта от фотоэффекта.

Совершенно другие энергии и радиационные последствия наступают в случае, когда необходимо ионизировать электроны с внутренних K,L,M,N-оболочек атома. Энергии фотонов увеличиваются в тысячи раз, а ионизация электрона с такой внутренней оболочки приводит к каскаду характеристического излучения этого вещества при возвращении и стабилизации атомов в основное состояние. На этом принципе основан рентгено-флюоресцентный метод анализа вещества.

Фотоатомные реакции. Свойства различных микровихронов образовывать те или иные микрочастицы, прежде всего, зависят от промежутка времени и скорости изменения[94] полей, породивших их, а уж потом от условий полей пространства, через которые они проходят. Внешние свойства вихронов также зависят от длины волны, как свойства радиоволн отличаются от свойств фотонов, рентгеновских лучей и гамма-квантов. Так, например, при энергии налетающего на атом фотона гамма-излучения выше пороговой в 1022 Кэв электромонополь его свободного микровихрона тормозит до полной остановки движение магнитного монополя, взаимодействуя с полем атомного ядра. При этом происходит его деление на два самостоятельных, но замкнутых[95] и покоящихся вихрона, в фазовом объёме которых уже рождаются гравитационные монополи. На фиг.2.4 приведена схема деления свободного (чёрный шарик) вихрона таких фотонов на два разнополярных (красный и синий).

Фиг.2.4 Схема рождения пары в поле атомного ядра

Природа механизма этого явления заключается в следующем. Находясь в движении в фазовом объёме (от 1/8 до 3/8 периода) фотона, остаток первичного магнитного монополя, через посредство противодействующего ему электрического монополя, уже возбудил равный ему и противоположный. И, в этот момент, внешнее поле отрицательного электрического монополя вихрона взаимодействует с сильным полем атомного ядра[96] — происходит торможение и остановка магнитных монополей, поляризация, разрыв и деление фазового объёма микровихрона. Электрический и магнитный монополи этого вихрона поляризуются и тормозятся в движении от скорости света до полной остановки. В момент торможения поляризованный магнитный монополь уже не может существовать, также разряжаться и продолжать предыдущий процесс индукции противоположного монополя, поэтому происходит противодействие этому процессу, подобное действию электрического монополя при свободном движении. Это противодействие — квантовый переход в его покоящийся аналог, т. е. в гравитационный монополь, источник покоя в замкнутом объёме новой частицы с массой. При этом, окончание зарядки гравитационного монополя совпадает с полной остановкой после торможения. Свободно-поступательное движение вихрона со скоростью света заменяется рождением двух покоящихся гравитационных монополей. Эти монополи, разряжаясь уже в замкнутом объёме, способны только заряжать-регенерировать поляризованные магнитные монополи и развёртывать при разрядке в этом замкнутом пространстве историю своего рождения в зёрнах-гравпотенциалах. Волновод из этих зёрен во внешнем пространстве индуктирует гравитационное поле противоположное по знаку активному полю тяготения Земли. Процесс периодически повторяется с высокой частотой, но теперь уже вместо электрического монополя, с участием и через посредство зарядки-разрядки гравитационного монополя. Теперь основным носителем кванта индуктированной энергии является гравитационный монополь. Так образуется стабильная однополярная каноническая форма замкнутой оболочки микрочастиц со спином ћ/2 — неполная квантовая завершённость преобразования магнитной энергии со сбросом остатка предела её накопления в гравитационный монополь. В результате, два противоположных и поляризованных монополя создают замкнутые объёмы двух самых лёгких и электрически заряженных стабильных микрочастиц, обладающих массой. Энергия материи в форме одного магнитного заряда, как носителя кванта индуктированной энергии и источника свободного движения со скоростью света — переходит в энергию двух других в форме зарядов состояния покоя — гравитационных монополей. Теперь носителями индуктированной энергии являются гравитационные монополи. Этот процесс переходит в последовательный взаимно-периодический с такой частотой, что при экспериментальной регистрации измеряют лишь величины электрического заряда, массы и спина. Это одиннадцатое свойство свободного запорогового электронного микровихрона — захват электромонополя и деление на два самостоятельных полярных и противоположных вихрона, способных создавать замкнутый фазовый объём однополярной электрически заряженной микрочастицы со спином ½. Такой процесс возможен лишь в связи с тем, что движение изменившихся и поляризованных монополей в этих замкнутых объёмах происходит без индукции встречного монополя, но с самоиндукцией самого себя через посредство разрядки-регенерации вновь рождённого гравитационного монополя — это двенадцатое свойство замкнутого микровихрона. Таким образом, переменный магнитный монополь одного знака может существовать не только в зоне индукции, но и в замкнутом объёме электрона и других заряженных однополярно элементарных частицах. Электрический монополь возникает всегда, как противодействие разрядке магнитного заряда. Гравитационный монополь индуктируется только в замкнутых вихронах, как противодействие изменению скорости в центростремительном движении-вращении магнитного заряда при его торможении во время зарядки и как сброс накопленной энергии при неполном квантовом преобразовании магнитного монополя. Структура геометрического уложения спиралей из зёрен-гравпотенциалов при зарядке на поверхности соответствующих сфер, является полным аналогом структуре (Фиг. 2.1) магнитного заряда — сфера с максимальными значениями зёрен-гравпотенциалов находится в центре. Отличие его свойств от свойств магнитного монополя заключаются лишь в том, что он всегда рождается и связан с тем замкнутым фазовым объёмом микрочастицы, в котором находится (тринадцатое свойство), а при разрядке индуктирует поляризованный магнитный монополь того же знака на удалении четверти длины волны от своего начального местоположения. Волновод из гравпотенциалов, созданный при разрядке в замкнутых волноводах разного диаметра во внешнем пространстве индуктирует[97] массу покоя частицы. При этом, магнитный монополь всегда движется только на зарядку к центру поверхности полусферы замкнутого волновода. Электрический монополь в этом процессе не возбуждается. Это четырнадцатое свойство замкнутого микровихрона — квантовый переход энергии из источника движения в другую форму в виде источника покоя, т. е. индукция массы микрочастицы во внешнем пространстве с помощью внутреннего волновода из установленных зёрен-гравпотенциалов.

Итак, главное, при разрядке и движении по окружности со скоростью выше скорости света магнитный монополь в свободном микровихроне индуцирует противодействующий процессу уменьшения его заряда электрический монополь, а при торможении и уменьшении скорости до полной остановки он превращается в свой покоящийся аналог — гравитационный монополь.

Фотоядерные реакции лёгкими фотонами. Аналогично с уже рассмотренным процессом фотоатомных реакций с испусканием микрочастиц, происходит процесс Гигантскогорезонанса при пороговых энергиях фотонов от 10 до 25 Мэв, когда длина волны становится сравнимой с диаметром ядра, что приводит также к излучению различных микрочастиц.

Фотоядерные реакции «тяжёлыми» фотонами. Рассмотренные выше фотоны, полученные при излучении возбуждённых атомов или ядер, назовём «лёгкими» фотонами, только таким фотонам свойственно определение их энергии через произведение частоты и постоянной Планка. К их числу следует отнести и лазерное излучение даже высоких плотностей потока луча. Однако в природе Вселенной[98] встречаются такие процессы, например, электрические разряды атмосферных молний, при которых синфазно за очень короткий промежуток времени порядка 10-12 секунды и в очень малом локализованном объёме[99] в импульсно-переменном электрическом поле больших токов и напряжений рождаются путём слияния магнитные заряды с максимально возможной плотностью упаковки зёрен-потенциалов как на самих спиралях, формирующих сферу этого заряда, так и названных спиралей, вплотную примыкающих друг к другу (фиг. 2.5). Назовём такие электромагнитные фотоны «тяжёлыми».

Фиг. 2.5 Лёгкие атомные и «тяжёлые» СВЧ — фотоны.

«Тяжёлый» монополь вихрона СВЧ[100] диапазона (в его фазовом объёме находится очень большое количество атомов), проходя через кластер вещества, также производит волноводы и способен ионизировать не только электроны внешних и внутренних оболочек атома, но может ионизировать частицы внешних оболочек атомных ядер. Как следствие этих процессов, вдоль потенциалов волновода идут вихревые токи, а первичный химический состав вещества изменяется.

Рассмотренный процесс касается формирования лишь одного атомного микровихрона фотона. А, например, в работах В. В. Авраменко показано рождение мощного потока фотонов на границе разрыва спирали нити обычной бытовой лампы накаливания, при питании одним проводом, включённой в схему, разработанной этим автором. В этих экспериментах по однопроводной передаче энергии горят как исправные лампы, так и перегоревшие — это процесс переноса электрического заряда магнитными монополями.

Вспышки света, предваряющие атмосферный разряд обычной молнии, или при включении вилки в розетку, для питания прибора с потреблением тока более одного ампера — это поток вихронов с широким спектром частоты вплоть до оптических. При этом следует сравнить сходство излучения потока фотонов при возбуждении кластера плазмы (изменение электрического поля в атомах плазмы — однофотонный механизм излучения на один атом) с излучением потока фотонов (вспышки) в глубоком вакууме без атомов и плазмы вблизи электрода, на котором происходит пикосекундное импульсное высоковольтное изменение потенциала. В этом случае имеется область зарождения потока магнитных монополей разной частоты, которое можно детектировать по вспышке мощного потока фотонов в оптическом диапазоне. Отсюда вывод, что во всех случаях, когда в какой-то области пространства начинает мгновенно (скорость изменения) изменяться электрическое поле, всегда рождаются синфазные магнитные монополи за счёт энергии его изменения, которые способны переносить соответствующий электрический и магнитный заряды из одной его точки в другую.

Если окружающее область вспышки пространство содержит атомы, а энергия заряда магнитного и соответствующего электрического монополей соизмерима или больше энергии заряда атомного ядра, то происходит или резонансное поглощение этого фотона с переводом атома в одно из возбуждённых состояний, или ионизация связанного в атоме электрона, или происходит рождение пар[101] элементарных частиц — электронов и позитронов, мюонов. При взаимодействии атомов с «тяжёлыми» СВЧ фотонами возможно их частичное поглощение с возбуждением механических колебательно-вращательных уровней, ионизация частиц внешних оболочек атомов и атомных ядер с выделением ядерной энергии. Частоты таких фотонов находятся в известном ИК-диапазоне. А вот энергия таких «тяжёлых» фотонов определяется уже величиной магнитных зарядов, а не произведением частоты на постоянную Планка.

Длиноволновый гигантский солнечный макровихрон специфически[102] взаимодействует с плазмой Солнца — в момент его выхода через поверхность фотосферы его электромонополь захватывает кластер фотосферы, который через мгновение будет выброшен исчезающим электромонополем из его фазового объёма, и образует в фотосфере пару брешь — «чёрное пятно» и белое пятно над ним. Такие заряды замечены (фото 2.2–2.3) на поверхности Солнца — назовём их «сверхтяжёлыми» фотонами.

LENR. Именно такой метод позволяет при относительно небольшой частоте фотонов (ВЧ, СВЧ, КВЧ и ИК диапазон), но очень высокой плотности зёрен-потенциалов на волноводах, инициировать эффекты СВЧ бытовой микроволновой печи — вихревые токи, а также уже широкоизвестные низкоэнергетические[103] ядерные реакции (LENR) с производством дополнительной энергии (тепловой или электрической) за счет полной локальной обдирки от электронов (ионизации) и фотоионизации частиц, входящих в состав внешних ядерных оболочек тяжёлых элементов. При этом, необходимо отметить аналогию поведения взаимодействия лёгких фотонов с внешними электронами в атоме с «тяжёлыми» фотонами, которые таким же образом ионизируют частицы с внешних оболочек атомных ядер.

Рассмотренная структура[104] лёгких и «тяжёлых» фотонов является ключом открытия тайны массы, заряда, спина, гравитации, инертности, электротока, твёрдости, вязкости и других физических свойств различных сред, механизма электросопротивления и других фундаментальных явлений природы в микро — и макромире атомно-молекулярных веществ, в том числе и LENR реакций в атомно-молекулярных агрегатных состояний материи.

2.2 Микровихроны

Пространства вакуума космоса Вселенной заполнены светом и другим весьма широким многообразием потоков частиц, микрочастиц и электромагнитных волн. Однако звуковым волнам нет места в космосе — им для существования нужна вещественная атомно-молекулярная среда. Поэтому они живут и существуют лишь на звёздах и планетах. В этом разделе и рассмотрены электромагнитные, тепловые и звуковые микровихроны, порождающие такие волны и микрочастицы.

2.2.1 Электромагнитные микровихроны

Из открытой литературы со времён Д. К. Максвелла известно, что «магнитный монополь можно представить, как отдельно взятый полюс длинного и тонкого постоянного магнита. Однако у обычного магнита всегда два полюса, то есть он является диполем[105]. Если разрезать магнит на две части, то у каждой его части по-прежнему будет два полюса. Все известные элементарные частицы, обладающие электромагнитным полем, являются магнитными диполями. Сформулированные Д. К. Максвеллом уравнения классической электродинамики связывают электрическое и магнитное поле с движением заряженных частиц. Эти уравнения почти симметричны относительно электричества и магнетизма. Они могут быть сделаны полностью симметричными, если в дополнение к электрическому заряду и току ввести некий магнитный заряд и магнитный ток. Об этом Максвелл указывал ещё в 1873 г. Таким образом можно создать систему уравнений Максвелла с учетом существования магнитных зарядов.

Существующие классические уравнения отражают тот факт, что обычно магнитные заряды не наблюдаются. Если магнитные заряды существуют, то существование магнитных токов приведёт к поправкам уравнений уравнений Максвелла, которые можно наблюдать на макроскопических масштабах.

После Максвелла (1873 г.), сначала П. Кюри (1894 г.), А. Пуанкаре (1896 г.), а затем и П. Дирак (1931 г) создали квантовую теорию взаимодействия электрического заряда с магнитным зарядом, которая применима при условии знаменитого дираковского квантования. Из него следует, что магнитный заряд частицы должен быть кратен элементарному магнитному заряду.

В 1974 г. Поляков и т*Хоофт теоретически определили значение искомой массы магнитного монополя величиной в М 1016 Гэв.

В настоящее время магнитный монополь стал обязательным приложением всех объединительных теорий. Абелев монополь не имеет строгих ограничений на массу. Вместе с тем, неабелев монополь может иметь массу доступную LHC.

2000–2004 гг. — эксперименты, поставленные группой из Oklahoma University, TEVATRON, p¯p-столкновения.

(Al) n =1,M> 285ГэВ; n =2, M> 355ГэВ

(Be) n =3,M> 325ГэВ; n =6, M> 420ГэВ

2005 г. — прямые поиски магнитных монополей (группа CDF Run2), механизм Дрелла-Яна.

M>360 ГэВ, s=1/2

2005 г. — прямые поиски на ускорителе HERA, e + p — столкновения, масса монополя M > 140 ГэВ.

2005 г. — группа в составе Ю. Курочкин, И. Сацункевич, Д. Шёлковый, С. Януш определили пределы массы современного статуса магнитных монополей и перспективы их поиска на установке ATLAS, путём образования пары монополь — антимонополь двумя фотонами.

Существование магнитного монополя с определённым зарядом объяснило бы наблюдаемую в природе кратность электрических зарядов частиц заряду электрона. Однако при этом, пришлось бы объяснять, почему в свою очередь магнитные монополи имеют квантованные магнитные заряды.

Законы классической электродинамики допускают существование частиц с одним магнитным полюсом и дают для них определённые уравнения поля и уравнения движения. Эти законы не содержат никаких запретов, в силу которых магнитные монополи не могли бы существовать.

В общем случае, по мнению П. Дирака, магнитный монополь, как результат «динамического взаимодействия» не должен иметь традиционной массы покоя.

«Если магнитные монополи генерируются высокоэнергичными космическими лучами, непрерывно падающими на Землю, то они должны встречаться повсюду на земной поверхности. Их искали, но не нашли. Остаётся открытым вопрос, связано ли это с тем, что магнитные монополи очень редко рождаются, или же они вовсе не существуют».

Наиболее серьёзных результатов в теории фермионных магнитных монополей, развивая идеи вышеуказанных авторов, достиг Ж. Лошак (Франция, работы в период 1987–2005).

Как показано в кратко приведённом обзоре, неуловимый магнитный монополь ищут в состоянии статического существования, в каком существуют электрон и позитрон.

Такой монополь ищут уже более 80 лет, с тех пор как Поль Дирак определил его основные свойства:

— точечный источник радиального магнитного поля

— в нижнем пределе может достигать планковских пределов длины, т. е. 10-28 см

— в теории взаимодействий электрического и магнитного зарядов масса покоя магнитного заряда не предсказывалась

— магнитный монополь является стабильной частицей и не может исчезнуть до тех пор, пока не встретится с другим монополем, имеющим равный по величине и противоположный по знаку магнитный заряд

— любой магнитный заряд квантован[106]

— минимальный магнитный заряд в 137/2 раз больше заряда электрона

— магнитный поток[107] от таких зарядов также квантован.

Итак, магнитных зарядов с указанными П. Дираком свойствами нет в природе, а есть магнитная индукция и спин микрочастиц, порождаемый переменным магнитным монополем.

При формировании самодвижущегося фазового пространства фотона, состоящего из волновода электропотенциалов-зёрен, уложенных на поверхности двух соприкасающихся сфер причастна некая пульсирующая магнитным и противодействующим электрическим полевым током самодвижущаяся вихревая переменная частица с лидирующими магнитными свойствами.

В отличие от стационарного магнитного монополя Дирака, обнаруженный в зоне индукции вихревой переменный по знаку и величине магнитный монополь и связанный с ним при формировании фазового объёма фотона свободный вихронбозонный магнитный биполь, несколько отличается от своего знаменитого аналога своими уже зарегистрированными десятью свойствами. Вихрон образован следующим образом:

— в атоме с потенциальным электрическим полем[108] электрон переходит с оболочки, на которой он находится в состоянии возбуждения, на основную оболочку

— во время этого движения электрона его поле начинает изменять потенциальное электрическое поле ядра, в результате локальное поле зоны индукции, состоящее из множества зерен-электропотенциалов, вблизи электрона начинает изменяться, т. е. каждое зерно изменяется по-своему до определённого значения электрического потенциала, а вот скорость изменения у всех одинакова — скорость распространения статического электрического поля от стационарного источника

— такое изменение потенциала-зерна рождает магнитный монополь, который своим ростом противодействует[109] этому изменению, чем больше скорость перехода, тем меньше средний эффективный радиус магнитного монополя и больше плотность магнитных зёрен (фиг. 2.1)

— затем процесс движения электрона на основную оболочку прекращается — атом переходит из возбуждённого в основное состояние и этим определяет промежуток времени квантования микромонополей

— синфазно множество зерен указанного объёма локального поля[110], образовавших такие микромонополи, формируют суммарный локальный вихревой магнитный поток потенциалов; если суммарный[111] магнитный поток потенциалов достигает минимального порога, то образуется минимальный магнитный самодвижущийся вихревой монополь-вихрон в зоне излучения

— благодаря эффекту Ааронова-Бома введена особая роль электромагнитных потенциалов в физике квантовых явлений

— минимальный магнитный поток, обнаруженный экспериментально через эффект Я. Ааронова — Д. Бома, составляет величину 2,068х10-15 Вб.

— как только электрон в атоме занял основную оболочку, потенциалы перестали изменяться и магнитный монополь[112] стал источником движения-изменения, самодвижущимся вихроном — вылетел из зоны излучения, в случае квантовой завершённости его структуры

— далее этот магнитный заряд, разряжаясь в режиме самодвижения, строит волновод трека (фиг.2.2) движения фотона — микровихрон квантует зёрна-потенциалы геометрически фиксированные в пространстве, при этом заряд монополя уменьшается от максимального до минимального[113]

— одновременно с началом движения магнитного монополя рождается противодействующий его разрядке электрический монополь

— монополь[114] совершает каноническое спиралевидное движение с переменной частотой, обратно пропорциональной её диаметру и прямо пропорционально величине и скорости изменения первичного потенциала; вращение центра сферы происходит по радиусу-вектору переменного электромонополя.

Создание фазового объёма фотона идёт следующим образом:

— вначале[115] фазового объёма фотона уменьшающийся по величине максимальный по заряду магнитный монополь, разряжаясь, индуктирует противодействующий его уменьшению электрический монополь и производит волновод из зёрен-электропотенциалов, вращаясь по спиралям увеличивающегося диаметра с переменной частотой

— синхронно противодействующий ему электрический монополь на ¼ периода индуктирует увеличивающийся по величине вторичный противоположный магнитный монополь

— в точках 1/8 и 3/8 периода полволны фазового объёма фотона, оба магнитных монополя имеют одинаковую величину, но противоположные знаки

— на ¼ периода[116] первичный монополь полностью исчезает, взамен ему в точке ½ периода появляется и начинает разряжаться вторичный монополь той же величины, что и первичный, но противоположный по знаку

— на следующей полволне фотона, происходит то же самое, что и на первой, только противоположный монополь производит зёрна-потенциалы противоположной полярности

— полный период волнового движения магнитного монополя в одну длины волны фотона, характеризующийся спином частицы в одну постоянную Планка, определяет полную квантовую завершённость волнового перехода вихревой материи — это время в четыре раза большее времени перехода электрона из возбуждённого в основное состояние.

Так рождается один период длины волны кванта фазового объёма фотона, в котором свободный первичный микровихрон, превращаясь на полволне в зеркальный, опять трансформируется в изначальный. В бесконечном движении в пространстве Вселенной рождается трек фотона — фиг.2.3.

Отсюда можно определить минимально возможный и неполяризованный свободный вихрон в пространстве, как самодвижущийся элементарный магнитно-электрический[117] вихревой микрообъём с пульсирующими и взаимосвязанными в нём вихревыми магнитными и электрическими токами, в котором поочередно меняются магнитные монополи[118] на противоположные, один из которых производит геометризованные зёрна-потенциалы только на первой ¼ волновода, а второй противоположный ему также производит потенциалы, но только на второй ¼ волновода полволны и противоположного знака.

Численно в системе СИ[119] значение элементарного атомного микровихрона можно определить постоянной Планка, т. е. произведением минимального электрического заряда на магнитный. Эта величина является фундаментальной атомной константой, а поэтому такой вихронфундаментальный полевой квант движения, пульсирующий свободный магнитный биполь[120] в свободном пространстве. Это пятнадцатое свойство вихрона — фундаментальное свойство этого конкретного кванта, создающего конкретный спин микрочастицы и характеризующего физический смысл постоянной Планка, т. е. кванта наименьшего атомного действия.

Вихрон может находиться в форме свободно существующих квантованных магнитных вихрей, всегда движущихся вращательно-поступательным образом со скоростью света с массой равной нулю. В случае торможения и полной остановки, вся энергия заряда этого вихря переходит в массу его покоящегося аналога — гравитационный монополь. А так как он, в силу своей динамично-вихревой структуре в свободном пространстве, всегда связан с созданием потенциалов[121] электрических волноводов, то квантование П. Дирака однозначно указывает на причастность этих свободных и взаимно-ортогональных вихрей с минимальным размером до 10-28 см в создании микрочастиц с целыми и полуцелыми спинами. Таким образом, микровихрон — это спинообразующее «сердце» элементарных частиц, созданных им.

Собственно полевую форму вихрона зарегистрировать технически невозможно в связи с отсутствием соответствующих по быстродействию детекторов[122]. Поэтому, в настоящее время, регистрируют лишь элементарные частицы, им построенные, и в фазовом объёме которых они движутся.

Некоторые внешние и внутренние свойства свободных вихронов уже рассмотрены в предыдущем разделе в следующей причинно-следственной связи:

— параметры[123], отражающие конкретные внутренние свойства вихронов, рождают[124] очень конкретную элементарную частицу

— эта частица проявляет при взаимодействии с полями материи окружающей среды очень характерные только ей присущие физические свойства, называемые здесь внешними.

— на основании этих свойств она идентифицируется как, например, фотон или электрон.

Рождение свободного вихрона происходит на границе (1/8 — 1/6 длины волны) зоны индукции с зоной излучения около стационарного источника, вокруг которого меняется[125] электрическое поле.

Размеры активного объёма микровихрона в четыре раза меньше длины волны фазового пространства оптического фотона или радиоволны, или гамма-кванта. Минимальные размеры его магнитного монополя могут достигать планковских значений длины, а максимальные неограниченны и могут достигать значений энергии, оценённые Поляковым и т٭Хоофтом и даже больше.

Каноническое движение магнитного монополя, создающего конкретный волновод микрочастицы, определяет её спин. У замкнутых частиц типа электрона этот спин полуцелый. У них каждый поляризованный монополь движется в своём индивидуальном «домике» — позитрон или электрон. Полусферы замкнутых волноводов этих частиц охвачены виртуальным протекторным магнитным полем. Кроме того, замкнутый внешний волновод электропотенциалов индуктирует в пространстве электрическое поле (виртуальный заряд и геометрическую пространственную структуру), как если бы это поле было сформировано постоянным точечным и бесструктурным точечным источником в пространстве. Это шестнадцатое свойство замкнутых полярных микровихронов.

Энергия в 1022 Кэв является тем минимальным порогом[126], свыше которого идут фотоатомные реакции, в результате которых образуются замкнутые однополярные вихроны электронов, позитронов или мюонов. До этой энергии, в общем случае, могли образовываться только биполярные свободные микровихроны, т. е. бозонные вихроны в фазовом объёме которых пульсируют два переменных противоположных магнитных и один электрический монополь. При энергиях много больше первого порога стабильные волноводы подобные электрону больше не создаются, это единственная резонансная частота на поверхности Земли.

Вихроны фотонов с существенно более высокой энергией способны создавать при определенных условиях замкнутые нестабильные полусферические (спин ½) микропространства мюонов, а также замкнутые сферы-оболочки (спин 0) ядерных волноводов из заряженных мезонов и других элементарных частиц с помощью поляризованных магнитных зарядов ядерной частоты — мезонные магнитные заряды. Это семнадцатое свойство ядерных замкнутых микровихронов.

Имеются и другие резонансные частоты ядерных фотонов, при которых могут объединятся с помощью различных резонансных микровихронов вложенные друг в друга многооболочечные структуры микрочастиц — это многочисленные ядра химических элементов. Это восемнадцатое свойство мезонных замкнутых ядерных вихронов. Так, например, несколько таких вихронов, образующих фотоны с энергией выше 1 Гэв со строго определенным энергетическим спектром при определенных условиях (аналог поля атомного ядра — мишень коллайдера, поверхность ядра звезды или молодой планеты) способны образовывать вложенные друг в друга фазовые объёмы замкнутых волноводов-оболочек (как внутренние слои луковицы). Такие резонансно замкнутые волноводы, содержащие в себе движущиеся к своим полюсам соответствующие магнитные противоположные заряды, способны стабильно сосуществовать в форме объёмов-микропространств нейтронов, протонов и других ядер химических элементов. Начиная с этой пороговой энергии ядерные микровихроны, получив при определенных взаимодействиях конкретный тип полярности, поляризации и частоту, способны также свободно образовать сферические, эллиптические и полусферические замкнутые пространства, как свободные биполярные вихроны образуют аналогичные волноводы свободного фотона. В ядрах звезд и на их поверхности, а также в мантии молодых планет в подобных условиях идет производство ядер схожих по структуре нейтрону, но и более тяжёлых. При этом, вихроны их образующие, а именно их число, поляризация, полярность и частота, в замкнутом многооболочечном пространстве, определяют такие внешне проявляемые свойства этих ядер как масса, время жизни, заряд, спин и размер сферы, занимаемой этими ядрами. Широкий диапазон частот, начиная от 1023 гц до планковских (1043 гц), большое разнообразие форм и степени поляризации, вплоть до деления и сложения энергии и спина, деление разных и слияние одинаковых монополей, концентрический захват и слияние сферических центров резонансных вихронов, высокая пластичность во взаимодействиях — всё это наделяет микровихроны такими же свойствами при строительстве широкого разнообразия микрочастиц Мироздания, какими обладают молекулы ДНК при выращивании живых клеток флоры и фауны.

Именно характер синхронизации движения[127] и взаимодействия микровихронов внутренних с вихронами внешних оболочек элементарных частиц, а внешних — с окружающими полями, определяет их время жизни, механизм и природу одного из фундаментальных взаимодействий — слабых взаимодействий, т. е. последовательная синхронность движения магнитных зарядов, расположенных в центре ядра, с движением магнитных зарядов внешних оболочек, приводит к стабильности его массы, ассинхронность — к распаду. В случае отсутствия запирающих и поляризующих (электрических) или стабилизирующих (например, поверхность нейтронной звезды) полей рано или поздно вихрон покидает созданный им волновод, строит новый, соответствующий новым условиям. Этим в нём достигается энергетический баланс и новая стабильная жизнь. Таким образом, механизм слабых взаимодействий определяется параметрами, свойствами и синхронностью взаимодействий движущихся в микрочастицах микровихронов. Это девятнадцатое свойство ядерных вихронов.

Отсюда вытекает обоснование производства ядерной энергии не только за счёт деления[128] (эксплозии) тяжёлых атомных ядер, но и за счёт легко регулируемого вынужденного распада таких ядер[129], путём облучения резонансными «тяжёлыми» вихронами с последующей ионизацией микрочастиц, составляющих внешние ядерные оболочки, и перестройкой ядерного окружения решётки твёрдого тел, т. е. активизация цепной реакции по каскадной поочерёдной ионизации этих частиц путём кумулятивной имплозии кластеров потенциалов в область полей их связи. Последующий синтез тяжёлых и сверхтяжёлых ядер химических элементов окружения идёт с производством энергии в десятки раз превышающей энергию деления ядер.

Итак, замкнутый вихрон — это пульсирующий магнитным и гравитационным вихревым полем переменный заряд, одна из форм материи, покоящийся микрообъём вихревых полей — источник массы, индуктирующий с помощью, им созданных волноводов электрический заряд, спин, массу и магнитный момент. Он является спинобразующим «сердцем» у элементарных частиц и «мозгом» творения той или иной микрочастицы, т. е. электрона, мюона или мезона и т. д. В то же время свободный атомный вихрон — это заряд-«квант движения», физический смысл постоянной Планка, родителем которого является область изменения электрического поля в атоме или его ядра. Свободный вихрон, т. е. вихревой магнитный биполь в отличие от электрического диполя, не существует в состоянии покоя и не имеет постоянных массы и электрического заряда. При этом эффективный размер магнитного заряда вихрона может изменяться в широких пределах и достигать как минимальных значений на много десятичных порядков меньше самой возбуждённой микрочастицы, его излучающей, так и достигать максимальных значений, зафиксированных в хромосфере на поверхности Солнца.

Главное внешнее свойство, проявляемое запороговыми замкнутыми микровихронами в природе — это создание долгоживущих «домиков» из сверхтекучих микроволноводов из зёрен электро — и гравпотенциалов, из которых построен весь атомно-молекулярный мир планет, звёзд и галактик, а также вся флора и фауна на Земле. Электромагнитные микровихроны — это природное явление, ранее неизвестное в научной литературе, но именно эти первочастицы путём самоструктурирования построили весь материальный мир нашей Вселенной в тех формах, которые полностью соответствовали условиям их местонахождения, т. е. около ядер звёзд и в мантии Земли одни частицы, а на её поверхности те, которые уже описаны таблицей Менделеева.

Источник «тяжёлых» вихронов — это отличная от изменяющегося поля атома область пространства: ядро ЧСТ, активные антенны, молнии, возбужденные диполи и другие разнообразные технические устройства, рассмотренные в третьей главе этой книги. Свободные «тяжёлые» вихроны в форме электромагнитных квантов способны производить вихревые токи[130]. Такие же вихроны ответственны за квантовый локальный перенос электрического заряда в проводниках, в газах и в жидкостях. Вся радиолокация, телевидение, дальняя[131] космическая связь и любая другая связь обусловлена самодвижущимися свободными вихронами и т. д. Однако необходимо различать СВЧ атомных фотонов от таких же по частоте «тяжёлых» фотонов, которые уже способны приводить к LENR изменениям первичного химического состава кластера атомно-молекулярного вещества. Это различие заключается в том, что в последнем случае используемые фотоны получены при очень больших токах и напряжениях в очень коротком импульсе, т. е. имеют максимально возможную плотность зёрен-потенциалов на единицу длины и поверхности волноводов. Другими словами, они обладают гораздо большей энергией, чем произведение их частоты на постоянную Планка.

Неоднократные попытки исследования очень загадочного диапазона частот фронтов высоковольных импульсов 109 — 1012 Гц, порождающих в электрических разрядах эктоны или зарядовые кластеры приводили авторов Г. А. Месяца и К. Шоулдерса к созданию даже новых технических отраслей — разработке мощных специальных СВЧ-генераторов.

Сложность обнаружения[132] вихревых магнитных монополей и идентификация их свойств маскируется свойствами тех элементарных частиц или зарядовых газовых кластеров, фазовые объёмы[133] которых они строят или преобразуют, сверхтекучим образом движутся в них по волноводам и обновляют их, поддерживают и живут там достаточно долго.

Другая сложность заключается не только в том, что все элементарные частицы (кроме нейтрино) содержат эти вихроны, а в том, что они не дают обнаруживать себя в собственном виде за то время, которое современные детекторы способны регистрировать самые короткоживущие элементарные частицы. Поэтому те формы «домиков» или специфических кластеров, которые они создают на поверхности Земли, и регистрируют уже в форме тех или иных заранее известных микрочастиц, эктонов или зарядовых кластеров.

Так, например, переходной момент ядерного вихрона в ту или иную микрочастицу в настоящее время в САП определяется «образованием струй». Эти струи являются продуктами превращения в адроны, якобы, кварка или глюона. Исследования струй в столкновениях (ядро-ядро) показало, что они, в основном, состоят из π-мезонов с энергией в системе покоя кластера ядро-ядро порядка 150 Мэв.

Во время эксперимента на коллайдере в Брукхейвене 2001 года регистрировался специфический эффект, названный подавлением струи. Когда сталкиваются два иона в обычных условиях, они дают две струи частиц, рассеивающихся в противоположных направлениях. Но в эксперименте по столкновению ядер золота в Брукхэйвене датчики временами фиксировали наличие только одной струи. Были поставлены контрольные эксперименты (январь — март 2003 года), в ходе которых ионы золота сталкивались с гораздо более легкими ионами дейтерия. Хотя энергия ионов золота оставалась такой же, как и в основных экспериментах, совокупной энергии столкновения было уже недостаточно, чтобы получить кварк-глюонную плазму. Напротив, маленький дейтрон проходит через «большое» ядро золота «подобно пуле», как через пустоту, не нагревая и не сжимая его. Ядро золота остается в своем обычном состоянии, то есть составленным якобы из привычных протонов и нейтронов. Из этого следует, что протон-нейтронная модель ядра «хромает» уже на обе ноги, а определение кварк-глюонной плазмы (сейчас этот термин заменён на кварк-глюонную материю) и её конкретное экспериментальное подтверждение до сих пор не получены. Более того, и механизм генерации массы, в том числе и у нуклонов, с помощью бозонов Хиггса также не подтверждён более достоверно, чем то «представление» на БАКе в ЦЕРНе 04.07.12. Следовательно, Стандартная модель элементарных частиц не оправдывает серьёзных надежд на механизм рождения массы.

Неразрушающих типов детекторов не существует, поэтому после регистрации структура первоначальной частицы пропадает. Так, например, первоначальный фотон после взаимодействия с активным веществом детектора превращается в фотоэлектрон, или освободившийся электрон и изменённый фотон, или вообще образуется пара электрон-позитрон или пара разнополярных мюонов. А связано это с тем, что быстродействие процесса образования новой частицы вихроном (10-23 с) на много десятичных порядков больше процесса регистрации этих частиц любыми сверхбыстродействующими современными детекторами.

Для изучения возбуждённых кластеров ядер и струй в пространстве наиболее эффективны трековые детекторы частиц, позволяющие регистрировать множественное рождение частиц в условиях 4π-геометрии — пузырьковые камеры и некоторые другие. Однако по быстродействию (1–5 х 10-3 с) они далеко уступают времени образования микрочастиц вихронами — двадцать десятичных порядков.

Внешнее отрицательное электрическое поле замкнутого микровихрона свободного теплового электрона на поверхности Земли при захвате электрическим полем ядра атома способно в соответствии с законом де Бройля перестраивать свой волновод в часть одной из атомарных сферических оболочек с соответствующим размером и принципом Паули — назовём их дебройлевскими атомными микровихронами. Более высокочастотные замкнутые вихроны при соответствующих условиях способны создавать пары микрочастиц противоположных по электрическому заряду волноводов, образующих ядерные оболочки со структурой типа пи-ноль и к-ноль мезонов. Структура этих частиц аналогична мюонам с полуцелым спином. Это двадцатое свойство атомных, ядерных замкнутых и однополярных вихронов, принадлежащих электрону, мюонам или ядерным частицам.

Спин микрочастицы характеризуется состоянием магнитного монополя в микрочастице, т. е. его способностью к процессу разрядки-зарядки или только зарядке, т. е. его способностью к полному или неполному квантовому преобразованию индуктированного кванта энергии от знака плюс к знаку минус для сохранения средней. Если магнитный монополь индуктирует противоположный через посредство электрического, то происходит законченное квантово-волновое преобразование электромагнитной формы материи, и спин равен единице — фотоны. Если магнитный монополь индуктирует вместо противоположного только гравитационный монополь, который разряжаясь опять возбуждает аналогичный магнитный монополь, т. е. происходит неполное квантово-волновое преобразование электромагнитной энергии, и спин такой частицы равен половине постоянной Планка — это электрон, мюон или ядерные частицы, входящие в состав ядерных оболочек.

Свободный вихрон, как физическое явление можно, сопоставив с зарядом массы и электрическим зарядом микрочастиц[134], в общем, назвать зарядом движения. Таким образом, спин, масса и электрический заряд частиц — это заряды[135] соответствующего состояния материи и признаки наличия микровихронов в элементарной частице, т. е. зарядов движения. При этом, масса и заряд являются признаками замкнутых волноводов. Причём первая индуктируется во внешнем пространстве стационарными зёрнами гравпотенциалами внутреннего волновода и представляет собой форму энергии в виде заряда массы покоя, а второй — стационарными зёрнами-электропотенциалами внешнего волновода.

Другой немаловажной характеристикой вихрона является величина плотности заполнения зёрнами-потенциалами спиралей волноводов, конечного времени излучения и размер области излучения его породившими, связанные с энергией, частотой спиралей, и частотой пульсаций противоположных магнитных зарядов — магнитных монополей. Скорость изменения первичного поля влияет лишь на частоту этого вихрона. Сила тока и величина напряжения при таком изменении поля становятся решающими в создании веса «тяжести» магнитных зарядов — плотности зёрен-потенциалов на единицу поверхности волноводов. В случае фотонов, происходит разовое производство опорных электропотенциалов на открытых и бесконечно длинных волноводах в космическом пространстве.

Продуктами самодвижения резонансных вихронов в замкнутых волноводах являются все известные стабильные и радиоактивные микрочастицы, в том числе электроны, протоны, нейтроны, все атомы и атомные ядра химических элементов, их изотопы и все известные элементарные частицы. Эти продукты получаются посредством производства электрических и гравитационных потенциалов-зерен[136], геометрически размещаемых на замкнутых волноводах фазовых объёмов микрочастиц с полуцелым спином.

В открытой литературе, и даже в последних работах Ж. Лошака, не имеется теоретических уравнений, описывающих рождение вихронов и их бесконечно долгую жизнь в космическом пространстве, самодвижение, взаимодействия и образование всех элементарных частиц. С помощью макроскопических уравнений[137] Максвелла — Фарадея и уравнений Дирака невозможно это выполнить, так как они описывают или распространение макроскопических электромагнитных волн в среде, или в них заранее заложено отсутствие переменных магнитных и электрических монополей. Нет в них и индукции векторного гравитационного монополя — основного уравнения для объединения всех теорий элементарных частиц с теориями тяготения.

Свободный вихрон это единственная бесконечно[138] долгоживущая и самодвижущаяся вихревая безмассовая полевая частица, не имеющая постоянного электрического заряда, а его переменные по величине магнитный и электрический заряд при своём полном исчезновении в фазовом объёме периодически меняют ещё и свой знак. Эти первочастицы формируют фазовый объём и трек движения фотонов и других электромагнитных квантов в вещественном или невещественном пространстве. Замкнутые вихроны строят волноводы фазовых объёмов стабильных атомов и атомных ядер химических элементов, электронов и других коротко и долгоживущих и свободных элементарных частиц — одним словом, это первочастица всего материального мира Вселенной. При ИК-частотах, когда в фазовом объёме вихрона появляется большое количество нейтральных атомов или ионов, их энергия способна преобразовывать последние при условии достаточной плотности потенциалов на единицу длины волновода.

Поясним некоторые свойства микровихронов более наглядно в динамике их движения.

На фиг. 2.6 показаны четыре[139] фазы мгновенного существования свободного вихрона (вихрон-биполь) — разряд первичного магнитного монополя и заряд противоположного монополя в составе произведённых вихрей волноводов положительных и отрицательных электропотенциалов, а также внешних протекторных магнитных полей.

Фиг. 2.6 Схемы вихрона — разряд его первичного монополя и заряд противоположного

На этой схеме не показано динамически изменяющееся вихревое поле электрического монополя вихрона, возникающее при разрядке первичного магнитного монополя. Его поле максимально в момент начала разрядки и изменяется по радиусу, перпендикулярном оси вихрона. Показаны сфероподобные магнитные монополи, магнитные вихревые заряды, структуры которых представлены на рис. 2.1. Меньший слева (зелёный) начинает процесс разрядки с производством положительных электропотенциалов и через четверть длины волны, увеличиваясь в размерах, полностью исчезает из фазового объёма. Противодействующий процессу разрядки электрический монополь индуцирует в начале четверти длины волны противоположный монополь (больший справа, зелёный), который, заряжаясь уже на узле половины длины волны имеет тот же размер и заряд, что и первичный. При зарядке он также производит электропотенциалы, как и первичный, но другого знака. Итак, вихрон-биполь плюс производит при разрядке положительные потенциалы и индуктирует электрический монополь, а его противоположный продукт — вихрон-биполь минус при зарядке производит отрицательные. По форме встречный магнитный монополь (схема справа) индуктируется противодействующим электрическим монополем, направленным навстречу действующему (схема слева), который и является источником рождения спирали изменяющихся положительных электропотенциалов. Ось вихрона проходит через центры[140] большого и малого сфероподобных монополей, является постоянно ориентированной в пространстве и служит основным параметром, характеризующим поляризацию фотона.

Противоположные магнитные монополи никогда не соединяются вместе, они всегда разделены в пространстве четвертью длины волны. Их всегда в движении разделяет разорванная спираль электропотенциалов и движущийся электрический монополь[141] независимо от величины магнитных зарядов. Если смотреть снаружи фазового объёма фотона на него, то он совершает поступательно-вращательное движение по спирали с переменным радиусом. Итоговым результатом этого процесса будет размещение положительных или отрицательных электрических потенциалов на шнуре волноводов, расположенных на поверхности чередующихся вытянутых или сплющенных сфер[142] на треке движения фотона, как это показано на фиг.2.3.

На фиг. 2.7 представлена схема динамики создания свободным вихроном спирали электропотенциалов волновода и переменных вихревых магнитных полей[143] фотона в фазовом объёме (голубая сфера) на полволны.

Фиг.2.7 Изменения магнитного поля в фазовом объёме полволны

В фазовом объёме на полволны непрерывно происходит изменение магнитного поля от монопольного (слева) одного знака через дипольное (посредине) к другому монопольному (справа), но другого знака. На фиг. 2.7 средняя позиция демонстрирует мгновенное состояние симметричного диполя (розовый двухполюсный торроид) при положении 1/8 первичного моноля от начала фазового объёма, а вторичного монополя на соответствующем расстоянии в 3/8 длины волны. Во всех других положениях поле между монополями будет ассиметричнымдиполем. А в момент подхода первичного монополя к четверти длины волны внешнее магнитное поле будет целиком определятся полем полностью заряженного противоположного монополя. Главной особенностью взаимодействия двух противоположных монополей является то, что они никогда не сближаются на расстояние меньшее четверти длины волны, а пространство между двумя полюсами, помеченное розовым эллипсоидом, не содержит осевого магнитного поля. В этом пространстве присутствует лишь начало недостроенной вторичным монополем спирали волновода электропотенциалов противоположного знака. Активный объём вихрона размером в четверть длины волны всегда содержит первичный разряжающийся монополь, противодействующий этому процессу электрический монополь, им индуктированный вторичный магнитный монополь и часть спирали волновода, установленной уже вторичным монополем. При переходе на вторую часть полволны вихрон сменяет себя на зеркальный, при этом первичный магнитный монополь исчезает, а возродившийся второй продолжает движение и повторяет создание волновода самодвижущегося фотона с электропотенциалами, но противоположной полярности.

Рассмотренное движение и изменение электрического и магнитного полей в свободном вихроне на одной длине волны носит законченный полный квантовый переход электромагнитной материи в волновом процессе при сохранении средней, что и определяет спин фотона. В динамике, по мере продвижения[144] вихрона по волноводу фотона, в пространстве остаются лишь соответствующие электропотенциалы, т. е. «скелет» волновода. Протекторное магнитное поле может возникнуть в точке лишь в случае изменения геометризации или величины этих электропотенциалов в пространстве.

Рождением столь устойчивых колебательных состояний, какими являются вихроны, природа обязана взаимной общности и разнице в формировании стационарных и вихревых электрических и магнитных полей в пространстве. Вихревые магнитные поля всегда возникают с изменением электрических полей и не существуют в состоянии покоя, а лишь в состоянии вращательно-поступательного и спирально-радиального движения. В отличие от вихревых, индукционные магнитные поля, порождаемые электрическими катушками-соленоидами, способны лишь создавать переменные поля электромонополей вихронов. Вихревые электрические поля — электрические монополи, также отличаются от полей стационарных источников. Электрические потенциалы на спиральных волноводах существуют в состоянии относительного покоя, что приводит к вихревым токам Фуко в сплошных твёрдых средах, где имеются свободные заряды. Кроме того, электропотенциалы и гравпотенциалы[145] — зёрна на волноводах являются опорой движения вихронов, строительной материальной базой образования элементарных частиц, молекул, твёрдого вещества и т. д.

Строго геометризованная совокупность электрических потенциалов, размещённых на волноводах в состоянии относительного покоя в металлах образует вихревые токи. Это явление на практике используют для передачи электроэнергии по электрическим проводам, но оно может приносить и вред. В сплошных магнитопроводах мощных трансформаторов идут большие потери электроэнергии на вихревые токи. Поэтому, с целью снижения этих потерь, магнитопроводы делают не сплошными, а наборными из тонких пластин.

Магнитные микрозаряды[146] в состоянии покоя не существуют и постоянного заряда не имеют — это источники движения и изменения материи, зарядыдвижения, спинобразующие первочастицы. В постоянном магнитном поле электрон движется по спирали и это можно назвать лишь регистрацией его электрического заряда с очень маленькой массой. И в то же время его магнитный монополь постоянно пульсирует в его замкнутом фазовом объёме, генерируя его массу, электрический заряд и пространственную структуру.

Зарегистрировать и поймать реальный магнитный монополь можно лишь косвенно. Суть способа заключается в том, что магнитный монополь — это лишь одна составная часть свободного вихрона, в котором существует ещё и его неотъемлемая часть, возникающая при разрядке — электрический монополь, а в замкнутом — ещё и гравитационный монополь, возникающий только при зарядке. Электрический монополь может быть захвачен полем атомного ядра, а «тяжёлый» вихрон СВЧ диапазона — зарядом кластера[147] плазмы с соответствующими параметрами. Гравитационный монополь проявляет себя инертностью поведения. В таких условиях вихрон изменяет свои внутренние и энергетические параметры:

— делится пополам, образуя две противоположные элементарные частицы, такие как электрон и позитрон или пару мюонов

— приобретает электрический заряд с образованием зарядовых кластеров[148]

— приобретает массу захваченного кластера плазмы

— преобразует геометрически этот кластер плазмы, т. е. модулирует

— преобразует физически химический состав захваченного кластера плазмы и нагревает его.

И вот после этого уже он и может быть зарегистрирован по движению и взаимодействию с окружающим веществом и полями, а также по модуляции плазмы фазовым объёмом монополей. А если масса плазмы жёстко связана, например, с решёткой твёрдого тела, то он будет пленён и его регистрируют по продуктам его взаимодействия с оболочками ядер решетки. Однако этот метод может быть применён лишь для регистрации магнитных монополей СВЧ диапазона с высокой плотностью зарядки.

Если регистрируется инертность поведения и масса элементарной частицы — это значит регистрируется и вихрон её создающий.

Метод регистрации электронных вихронов является также косвенным. Он заключается в том, что электрический монополь — заряд порогового вихрона гамма-кванта с энергией выше 1022 Кэв может взаимодействовать с сильным локальным стационарным электрическим полем атомного ядра с образованием пар микрочастиц и таким образом проявлять себя.

Магнитные монополи в вихронах жёстко связаны с электрическими. Электрические монополи вихронов, возникающие только при разрядке магнитных, способны захватываться и удерживаться атомно-молекулярной (поглощение фотонов) и плазмой решетки твёрдого тела, заставляя магнитные монополи «вмораживаться» в неё и расходовать всю оставшуюся в них энергию на вихревые токи, обдирку электронов с атомных оболочек и фотоэффект[149] заряженных частиц с внешних оболочек ядер типа мезонов.

Силовые линии электрического поля стационарных источников — радиальны, соединяют противоположные заряды и способны прерываться, начинаются и оканчиваются на поверхности зарядов, или на замкнутых металлических поверхностях. Силовые линии стационарного магнитного поля в основных макропространственных полях непрерывны и всегда имеют направление левого или правого винта по отношению к тем электротокам их вызвавшим — всегда кольцевые, эллиптические и т. д., замыкаются только на себя и никогда не прерываются[150].

Свободные вихревые поля всегда взаимосвязаны в движении или изменении при следующей архитектуре:

— при изменении значения лишь одной точки пространства потенциала-зерна электрического поля, всегда возникает квант объёмной 4π спираль-сферы[151] зерен — потенциалов магнитного поля, уплотняющийся к центру, в котором размещено это зерно, и с направлением силы противодействия той, которая изменяет этот изначальный электропотенциал

— при начале движения или смещения этого электропотенциала-зерна возникает спираль-цилиндр объёмных магнитных потенциалов-зёрен, который своим возникновением противодействует той силе, которая начала перемещать этот электропотенциал

— при продвижении и изменении зерен-электропотенциалов по спирали, вокруг каждого витка спирали возникает ортогональный виток спирали магнитных потенциалов-зёрен, препятствующий этому продвижению или изменению.

Это подтверждается следующим. Если сопоставить действие вихрей электрического и магнитного монополей в окружающем нас материальном мире, то это действо для магнитных более проявимо, чем для электрических. Чем это вызвано? Во-первых, минимальный магнитный заряд в 137/2 раз больше минимального электрического заряда. Во-вторых, на это, в частности, указывает сопоставление магнитной проницаемости вакуума и электрической проницаемости вакуума в системе единиц Гаусса. Известно, что магнитная проницаемость вакуума, которая характеризует магнитные свойства этой среды, равна 1,257 х 10-6 гн/м, а электрическая проницаемость вакуума, которая в свою очередь характеризует электрические свойства среды, равна 8,85 х 10-12 ф/м. В системе единиц СГС фарада и генри выражаются через единицу длины, а именно: 1ф=9 х 10 9 м, а 1гн=107 м, тогда в безразмерных единицах магнитная проницаемость равна 12,57, а электрическая — 0,08. Их соотношение равно 157. Это значит, что изменяющееся стационарное электрическое поле, концентрирующееся в точке зерне-потенциале, формирует магнитный заряд объёмной сферой или цилиндром вокруг этой движущейся или изменяющейся точки — центра, и противодействует силе двигающей или изменяющей этот потенциал-зерно.

Одноимённые стационарные электрические заряды отталкиваются друг от друга, противоположные — притягиваются. У стационарных магнитов кластеров вещества этот процесс аналогичен. Стационарные поля гравитации, электричества и магнетизма подчиняются законам Ньютона, Кулона и Био-Савара, вызывают радиально-центральное поступательное движение материи. Эти поля формируются[152] благодаря стационарной индукции.

Вихревая индукция — это явление в корне отличается от стационарной индукции по своей физической природе. Самодвижение магнитного монополя вызывает ещё помимо уменьшения его заряда ещё и индукцию электрического монополя, который в свою очередь, индуктирует ещё один магнитный монополь, но уже противоположный первичному — неизбежность инверсии полюса. А что самое главное, свободный микровихрон материально с помощью зёрен-электропотенциалов развёртывает в пространстве историю изменения электрического поля в точке своего рождения. Полярный магнитный монополь замкнутого микровихрона индуктирует ещё и гравитационный монополь. В свободном вихроне этого процесса не происходит, а когда он вынужденно останавливается — только тогда вся энергия этого источника движения из вихревой формы переходит в энергию покоя — гравитационный монополь. Этот процесс обратим, т. е. ускоренно-замедленное движение ядер атомов, атомов и молекул в собственной среде индуктирует вихроны. Например, деление урана с выбросом осколков, химические взрывы кластеров веществ с выбросом молекулярных осколков, электроразряд в жидкости с взрывным движением к электродам поляризованных частиц и т. д. Вихревые поля вызывают вращение или спирально-радиальное движение материи и наоборот — такое движение материи вызывает вихревую индукцию всех трёх полей, противодействующим силам, вызывающих это движение.

Если противоположные стационарные заряды притягиваются и соединяются, то у магнитных вихревых зарядов всё наоборот[153]: одноимённые притягиваются, фокусируются, объединяются или сливаются, а противоположные никогда не соединяются. Переменные электрические монополи в свободных вихронах индуктируют вообще не родственные ей поля — магнитные монополи. А в замкнутых вихронах происходит процесс, не родственный и магнитному с индукцией массы — рождение векторного гравитационного монополя. Такая разница между свойствами вихревых и стационарных полей проявляется и в том факте, что в окружающем нас мире обнаруживается энергия в форме только электрически заряженных частиц и частиц с массой покоя и спином, но не обнаруживается энергия в форме частиц со статическими магнитными зарядами.

Кроме того, любое изменение ранее установленной геометрической регулярности электрических потенциалов в пространстве ведет к появлению вторичного магнитного поля (или обратный эффект — рождение магнитного монополя), которое своим действием противодействует причине, вызвавшей это первичное изменение, т. е. магнитное поле обладает ещё и протекторными свойствами для геометрической стабилизации электрических потенциалов. Важно при этом отметить, что при определённых условиях системного кручения ¼ длины волны таких потенциалов волновода, происходит обратный процесс — процесс рождения магнитного монополя, заряда вращательно-поступательного движения.

Таким образом, в микромире у элементарных частиц имеются электрический заряд с постоянным значением, гравитационный заряд с постоянной массой — заряд покоя, а также конкретный заряд движения — спин. При этом, последний является признаком двух первых зарядов.

Другой весьма существенной особенностью двух взаимосвязанных вихревых полей является рождение и отрыв от источника квантования и движение со скоростью света. Таким же свойством обладают свободные фотоны де Бройля, которые квантуются движущимися микрочастицами и отрываются от них, в частности, от потока электронов в коллайдерах. В мишени коллайдера (аналогично, как образование пары в поле атомного ядра) образуется очень плотная плазма из таких дебройлевских вихронов не только с очень широким спектром энергий 1 — 100 Гэв (в области которой и образуются центральной фокусировкой замкнутые оболочечные структуры адронов, вложенные друг в друга как матрёшки), но и с таким набором[154] внутренних свойств ядерных вихронов, которые способны сформировать и структуры античастиц[155]. Отсюда получается вывод, что в этой мишени, в области-объёме, где образуется своеобразная ядерно-мезонная «плазма», имеется набор таких вихронов, которые являются зеркальным отражением уже рассмотренных. Такие вихроны, например, способны уже строить «домик» и для антипротонов.

Свободный вихрон — это магнитный пульсирующий заряд, т. е. колебания магнитного полевого тока при перезарядке от одного к другому через посредство электрического монополя с позиционной сменой знака[156] и превращением разряжающегося монополя в противоположный заряжающийся. При высокой концентрации замкнутых вихронов их внешние поля понуждают к взаимному слиянию — фокусировке и концентрическому объединению в оболочечные структуры типа нейтронов или антинейтронов. Это означает, что микроскопические вихревые магнитные потоки квантованы. Одинаковые по знаку монополи[157] способны объединяться с соседними с помощью своих полей как по вертикали, так и по горизонтали, а с противоположными не соединяются никогда. Это — двадцать первое свойство вихронов и тоже весьма существенное, так как противоречит предсказаниям теории П. Дирака о том, что монополь может исчезнуть только в том случае, если встретит противоположный и соединится с ним.

Реально, один магнитный монополь может исчезнуть, лишь превратившись в противоположный при разрядке, пройдя через промежуточный этап диполя — этот процесс замечен в природе магнитных полей (гипервихронов) Земли и Солнца. Пусть это будет двадцать вторым свойством магнитных монополей — инверсия полюсов связанных гипервихронов.

При исследовании рассмотренных процессов взаимодействий противоположных вихронов установлено, что минимальное расстояние в ¼ длины волны, на которое могут приблизиться виртуальные центры взаимодействующих противоположных и изменяющихся магнитных монополей, всегда было лишь заполнено недостроенной частью спирали волновода (Фиг.2.7), индуктированных заряжающимся магнитным монополем. Это подтверждается и экспериментально видеосъёмками[158] магнитного диполя в хромосфере Солнца — шаровая молния. Из этих видеооматериалов следует, что область оси между двумя магнитными монополями (связанный с противоположными кластерами ионов макровихрон) не содержит силовых линий, там видны лишь одни вихревые электрические токи на части недостроенной спирали, т. е. видна лишь движущаяся и возбуждённая материя, а вихревые поля магнитного двухполюсного торроида (на видеосъёмке магнитные силовые линии видны благодаря невидимым спиралям движения вокруг них электронов) и электрические остаются невидимыми. Такой связанный с массой плазмы хромосферы макровихрон[159] или зарядовый кластер К. Шоулдерса — биполь можно обнаружить только на Солнце, так как его электрический монополь захвачен-«вморожен» электрическим объёмным зарядом ионизированной атомной плазмой и будет находится в ней до тех пор пока не израсходуют всю свою энергию оба магнитных заряда на вихревые токи и ядерные превращения протонов в более тяжёлые ядра, например, ядра гелия, лития, кальция или железа.

Между потенциалами волновода текут вихревые ионные токи (фото 2.4) такой силы, что всю спираль электропотенциалов можно увидеть лишь при затухании свечения флоккулы на поверхности фотосферы (фото 2.5).

При этом следует различать слияние одинаковых вихревых магнитных монополей от отталкивания одинаковых полюсов стационарных магнитов и притягивания разных полюсов статических магнитных полей. Для полей стационарных источников[160] действуют другие физические законы их формирования. Они не применимы для свободных вихревых полей в силу различной физической природы индукции потенциалов — различен механизм индукции стационарных и вихревых полей (глава 1).

Различные по частоте, типу полярности и степени поляризации ядерные вихроны, заключённые в те или иные оболочки микрочастиц (элементарные частицы, атомные ядра), двигаясь в них внутри ядра на сближение, фокусируются сначала внешними электрическими полями соответствующих волноводов, а затем происходит захват и взаимодействие магнитных монополей, в результате которого изменяются параметры взаимодействующих вихронов и соответственно меняются сами частицы, содержащие несколько ядерных вихронов. Это — механизм слабых взаимодействий.

Нечто аналогичное происходит снаружи при взаимодействиях свободных вихронов с атомными и ядерными. Так, например, происходит взаимодействие фотона со свободными электронами, атомными электронами или атомными ядрами той или иной среды — комптон-эффект, фотоэффект, пар образование и т. д. Очень полно экспериментально исследованы взаимодействия свободных атомных вихронов, образующих гамма-кванты с различной энергией, с веществом, атомами и ядрами[161]. Аналог фотоатомных реакций и фотоэффекту имеет место и в фотоядерных реакциях с фоторождением мезонов. Наиболее интересные результаты, в этом направлении, получены в последние годы при облучении ядер пучками мезонов. И в настоящее время в таких экспериментальных работах уже серьёзно прорабатывается вопрос о вхождении в модель ядра структур типа нейтральных и заряженных π-мезонов. Как и структура атомных оболочек образована из связанных вихронов-электронов, так и внутренняя структура ядра состоит из биполярных оболочек, вложенных друг в друга замкнутых вихронов типа однооболочечной структуры нейтральных π-мезонов. Внешние оболочки ядер, как запирающие от распада внутренние, образованы уже заряженными π-мезонами по типу электронных атомных оболочек.

Первые исследования свойств фотонов начинались с изучения волновых свойств в оптическом и радио диапазонах. Достаточно полно изучены и взаимодействия замкнутых элементарных вихронов, образующих электроны, позитроны, мюоны и мезоны, протоны, нейтроны и другие элементарные частицы, с атомно-молекулярным веществом и его атомными ядрами. За эти явления ответственны — лёгкие атомно-ядерные микровихроны. А за такие свойства, какие проявляют экспериментально обнаруженные эктоны Месяца Г. А., зарядовые кластеры К. Шоулдерса, странное излучение Л. И. Уруцкоева, электромагнитные «снаряды» и «волны», полученные по технологии взрыво-магнитных генераторов МК-1 и МК-2 Сахарова А. Д., уже отвечают «тяжёлые» макровихроны.

Процесс LENR или Холодный синтез тяжёлых ядер изучался очень многими авторами, в том числе К. Шоулдерсом, М. И. Солиным, А. В. Вачаевым, С. В. Адаменко, Л. И. Уруцкоевым. Суть его сводится к поглощению плазмой решётки твердого тела хорошо проникающих в неё «тяжёлых» СВЧ-фотонов дооптического спектра. Однако микроскопического объяснения наблюдаемым ядерным превращениям ни одна из этих научных групп не приводит.

Экспериментальным подтверждением образования свободных магнитных монополей высокой плотности зарядки электропотенциалами СВЧ диапазона и их последующего движения с образованием трека электромагнитного кванта является обнаруженное «странное излучение», мощный поток которого освобождается при взрыве титановых фольг[162] в жидкостях, а также следы такого излучения в жидком цирконии, образующиеся в ядерном реакторе М. И. Солина. В этих же работах была произведена и доступная идентификация этого излучения по его взаимодействию с макро — и микро-магнитными полями. По утверждению авторов «странное излучение» — это поток различного рода магнитных монополей. В этих работах приведены микрофотографии[163] следов этого «странного излучения», зарегистрированных с помощью ядерных фотоэмульсий — это двумерные следы разреза объёмного волновода электропотенциалов фотона, оставленные свободным биполярным вихроном ИК-диапазона[164] электромагнитных волн, т. е. аналог такого «странного излучения» с длиной волны в 20 мкм. Как хорошо известно, вдоль этих электропотенциалов идут сильные вихревые токи, вызывая ионизацию и ядерные структурные изменения в среде распространения, в данном примере, в фотоэмульсии, или в расплавленном цирконии. Характерным качеством этих следов, отличающих их от известных следов различных элементарных частиц в таких детекторах, является строгая периодичность и высокая степень ионизации, т. е. длина волны фотонов порядка 20 мкм (1,5 х 104 Ггц). «Странность» такого излучения и заключается в том, что это «тяжёлые» кванты.

А, например, в экспериментах С. В. Адаменко пико-наносекундные[165] «тяжёлые» вихроны уже способны родить самородок[166] из чистого железа диаметром 100 микрон в первичной матрице анода, путём ионизации вихревым полем макровихрона частиц с внешних оболочек ядер меди. Другими словами, происходит ионизация заряженных частиц с внешних оболочек ядер меди до образования в стабильном (без радиоактивности протонной, нейтронной, гамма-лучей) состоянии атомов железа в фазовом объёме твердого тела с размерностью полволны этого резонансного фотона в 100 микрон. Такой процесс можно назвать фотоэффектом заряженных частиц с внешних оболочек ядер меди. Механизм ионизации ничем не отличается от атомного фотоэффекта внешнего электрона, но невозможен лёгкими атомными фотонами той же частоты. В этом процессе резонансные[167] «тяжёлые» СВЧ фотоны, создающиеся мощными магнитными зарядами и сфокусированные его электромонополями в центр полусферы анода, способны взорвать электрод изнутри вихревыми токами вдоль волноводов из электропотенциалов. Перед началом вихревых токов идёт сверхбыстрый ядерный ток — распаковка-фотоионизация потока заряженных частиц внешних оболочек атомных ядер, а также их резонансное взаимодействие с окружающими ядрами, преобразующих первоначальный состав ядер твёрдой решётки кристалла электрода. Освобождённые «тяжёлыми» магнитными зарядами[168] эти резонансные частицы активно оседают на близлежащих ядрах меди с образованием ядер цинка, что и наблюдается в опытах-выстрелах С. В. Адаменко. В отличие от Гигантского резонанса на ядрах, он якобы является низкоэнергетическим и подтверждает участие «тяжёлых» магнитных зарядов в таком процессе. Эти «тяжелые» фотоны создаются вблизи анода разрядом в 500 Кв с фронтом импульса до одной наносекунды и током свыше 10 Ка. Частоты, формирующие фронты таких импульсов, находятся в диапазоне 1012 — 1013 Гц, а плотность кластера зёрен-потенциалов, привносимого магнитным монополем во внешнюю оболочку ядер меди уже становится достаточным для ионизации частиц её заполняющих. При взрыве медного анода специальным электрическим импульсом, подаваемым на катод, в качестве продуктов получается почти полная таблица химических элементов Менделеева, а также ещё тяжелые и сверхтяжёлые ядра до 1000 атомных единиц.

Исследования LENR А. В. Вачаевым показали, что для получения каждого целевого элемента существует оптимальный ток стабилизации. Например, для Zn — 30 А/мм2, для Al — 18,5 А/мм2, для Fe — 22,2 А/мм2, для Cu — 25 А/мм2. Именно такие калибровочные плотности токов для конкретной водной проточно-разрядной ячейки (фото 2.6) в сочетании с электронной схемой индуктивного типа разряда (фото 2.7) в таком реакторе заряжают особые магнитные монополи с высокой плотностью заселённости зёрнами-магнитопотенциалов его спиральных сфер, которые при разрядке уже способны ионизировать внешние оболочки ядер путём имплозионного кумулятивного внедрения кластера зёрен-электропотенциалов, уже достаточного для ослабления связей частиц, образующих внешние оболочки ядер. В этих исследованиях особое внимание придавалось также режимам работы полупроизводственной установки «Энергонива-2» при производстве электрической энергии и переработке жидких радиоактивных отходов с атомных АЭС путём перевода их в нерадиоактивные шламы.

Стабильность микрочастицы, или её распад, период полураспада элементарных частиц[169] определяется соответствием формы и параметров их волноводов, образованных внешним вихроном, величине запирающего стационарного электрического поля и средней кривизне окружающих полей. Так, например, известный низкоэнергетический бета-распад в связанное состояние электрона в атоме на свободную оболочку сокращает период полураспада. А если свободны все электронные оболочки[170], как в случае рения Re-187, период полураспада сокращается до 33 лет вместо 4,3 х 1010 лет для нейтрального атома. Вихрон в новых условиях окружающих полей, в том числе сильных гравитационных, всегда строит новый соответствующий волновод, изменяясь и вылетая из старого — обоснование механизма слабых взаимодействий.

Наиболее грандиозные по объёму экспериментальные исследования свойств связанных вихронов СВЧ диапазона проведены К. Шоулдерсом с 1987 года — магнитные и электрические переменные заряды вихронов захватывают из ионизированного газа кластеры ионов и электронов и придают им новые свойства, т. е свойства зарядовых кластеров. Как и в каноническом случае генерации атомных микровихронов путём изменения электрического поля при движении атомного электрона в основное состояние, названные вихроны создавались передним фронтом высоковольтного отрицательго электрического импульса пикосекундной длительности, который подавался на катод, размещённый в вакуумной стеклянной трубке (фото 2.8) с остаточным[171] разреженным газом до единиц миллиметров ртутного столба. Автор определяет полученные таким образом зарядовые кластеры, как осциллирующие сферические монополи, или как электронные плазмоиды с дискретными уровнями энергии, или как солитоны — электромагнитные контейнеры, дрейфующие в глубокой потенциальной яме. К. Шоулдерс произвёл измерения и вычислил конкретные параметры зарядовых кластеров. Размер наблюдаемых единичных кластеров (связанных вихронов) около 0.1 мкм[172], а количество электронов, упакованных в такой кластер, составляет 108 — 1011 штук. Далее, зарядовый кластер приобретает значительную массу, захватывая из окружающего пространства атомы вещества в виде положительных ионов, в каждом по 103 — 106 атомов. Двигаясь в электрическом поле этой трубки и достигая анода, эти зарядовые кластеры производили ядерные реакции с изменением первичного химического состава электродов — LENR.

Первым экспериментальным подтверждением воздействия свободных резонансных вихронов[173] на период полураспада радионуклидов является облучение «странным излучением» уранового раствора. Кроме того, излучаемый при мощном электровзрыве фольги поток «странных частиц» может взаимодействовать с магнитным полем ядра железа и тем самым изменять его эффективное значение на ядрах железа Fe-57 на величину в 400 Э, что определяет его магнитную структуру. При взрыве титановых фольг в жидкости попутно поток «странного излучения» изменяет изотопно-ядерный состав первоначально участвующих атомов. Авторы определяют это взаимодействие как магнито-ядерное, а при определённых условиях, это излучение ещё способно влиять и на распад изотопов, изменяя при этом период полураспада некоторых радиоактивных ядер, т. е. влиять на константу скорости слабых взаимодействий. Можно считать это достоверно установленным фактом.

С точки зрения уже названных свойств вихронов, в этих процессах происходит последовательная фотоядерная распаковка-ионизация частиц с внешних оболочек ядра внедрёнными в них кластеров волноводов резонансных магнитных монополей — «тяжёлыми» фотонами с длиной волны 20-50-100-200 микрон. Привносимый в область электрического поля атома или ядра кластер потенциалов волновода свободных или замкнутых вихронов изменяет его, что и приводит к ионизации или возбуждению частиц внешних оболочек ядер и электронов атомных оболочек. Этот процесс ядерный, а значит сверхбыстрый 10-23 секунды, и в замкнутых вихронах происходит в момент зарядки магнитного заряда с производством волновода электропотенциалов. Определим это свойство — распаковка-ионизация микрочастиц внешних оболочек атомных ядер кристалличекой решётки твердого тела «тяжёлыми» резонансными магнитными монополями макровихронов, как двадцать третье.

В случае тепловых энергий, вихроны движущихся электронов при рекомбинации с ионами образуют также вложенные дебройлевские атомные замкнутые волноводы-оболочки, но уже размером длины волны на пять десятичных порядков больше — т. е. оболочки атомов со средним размером 10-8 см. В силу большой распространённости таких вихронов назовём их атомными. Однако возможно это лишь в условиях, которые имеют место на поверхности Земли. В условиях мантии, глубоко в недрах нашей планеты, где давления достигают 4 миллионов атмосфер, температура и плотность соответственно 5000 °C и 12 000 кг/м3, как показывают геологические исследования механизма возникновения и движения плюмов[174] к поверхности Земли от границы ядра с мантией, а также происхождение некоторых пород и минералов, находящихся в приповерхностной континентальной коре, вихроны образуют иные микрочастицы и с иными свойствами. Да и сами известные нам процессы радиоактивного излучения и распада становятся другими в связи с отсутствием свободного пространства в мантии для создания тех или иных микрочастиц. При этом обычные химические реакции заменяются очень похожими[175], но ядерными и ядерно-химическими превращениями, по типу мюонного катализа с образованием мюонных атомов или мезоатомов. Более того, известно, что такие явления низкоэнергетической трансформации[176] ядер химических элементов не имеют в настоящий момент в открытой литературе убедительных объяснений в рамках САП.

С точки зрения реального представления, для объяснения движения этих плюмов, а также ядерных превращений при образовании месторождений молибдена, урана в гранитах, гранита из базальтов и т. д., необходимо применять не протон-нейтронную модель ядра, а оболочечную на основе структур типа мезонов и мюонов, создаваемых микровихронами.

К другим свойствам вихрона относятся его бесконечное время жизни в вакууме космоса и ограничение скорости прямолинейного распространения пределом скорости света, обусловленное его собственным движением по спирали. Именно поэтому скорость света не зависит от скорости движения источника излучения.

Ядерные и атомные замкнутые вихроны с массой имеют вид движения по замкнутым волноводам в корне отличный от движения оптических микровихронов по волноводам фотонов и очень дискретный спектр конкретных резонансных частот, при которых возможно образование и стабильно долгая жизнь атомов, ядер химических элементов и электронов, т. е. стабильных микрочастиц. Макровихроны СВЧ диапазона с существенным значением магнитного заряда, в отличие от высокочастотных оптических и других жестких квантов, при прохождении через вещество имеют в своём фазовом объёме очень большое количество атомов и молекул, а поэтому способны их возбудить или даже ионизировать, а также частично распаковать внешние оболочки некоторых атомных ядер.

Частота обращений магнитного монополя по спиралям, образующих фазовый объём атомного фотона или замкнутой микрочастицы зависит от диаметра сферы и скорости изменения поля, в котором зародился этот монополь. Частота смены полярности монополя на противоположный при его разрядке определяет половину длину волны кванта. Его энергия численно равна постоянной Планка, делённой на 2π и время формирования кванта электромагнитного поля или время его излучения. Косвенно, его внешние свойства проявляются во всех элементарных частицах в виде спина, массы, зарядов, а также в характерных ядерных взаимодействиях и т. д. Размер и масса микрочастиц напрямую связана с числом вихронов в ней и значением величины их энергии. Все известные взаимодействия микрочастиц обусловлены свойствами вихронов и тех фазовых объёмов, которые они построили и в которых сами живут. При различных взаимодействиях они ведут себя весьма пластично, объединяясь с другими вихронами по вертикали и горизонтали, путём захватных и фокусирующих внешних магнитных полей с образованием концентрически вложенных друг в друга замкнутых волноводов, образованных разными по энергии резонансными вихронами. Они легко изменяют форму волноводов из замкнутых в свободные в отсутствие внешних запирающих полей, например, аннигиляции микрочастиц. И при этом также легко меняют свои внутренние параметры такие, как тип полярности, направление оси вращения, тип поляризации и частоту колебаний. Формируя волновод фотона при своём движении-разряде, свободный магнитный монополь весь свой заряд на ¼ длины волны превращает в электропотенциалы и противоположный магнитный монополь. В то время, как замкнутый магнитный монополь в своём движении-заряде в элементарной частице, исчезая на мгновение, превращается в гравитационный векторный заряд. Так происходит замена свободного движения магнитного монополя на замкнутое движение с рождением массы. И наоборот, замена кинетического движения массовой частицы на свободное движение фотонов со скоростю света — поток высокоэнергетических электронов при торможении-поглощении неподвижной мишенью из тяжёлых элементов генерирует поток рентгеновских лучей.

Таким образом, свободные биполярные вихроны образуют стабильные фотоны электромагнитных квантов со спином равным единице. Вихроны фотонов с энергией выше 1022 Кэв способны захватываться полем атомного ядра и делится на два полярных замкнутых и противоположных вихрона, которые рождают стабильные электрон и позитрон со спином ½. Более высокочастотные фотоны в поле ядра создают замкнутые однополярные вихроны, но производящие уже нестабильные мюоны со спином ½. При аннигиляции противоположных частиц, в частности, протонов и антипротонов[177], появляются короткоживущие нейтральные и заряженные мезоны с целочисленным спином, оболочки которых составленны из противоположных заряженных частиц со спином ½. Несколько разных по частоте резонансно-замкнутых биполярных ядерных оболочек при определённых условиях проявляют способность к концентрическому слиянию с образованием вложенных в друг друга биполярных оболочек нейтронов и антинейтронов, протонов и антипротонов и других ядер известных химических элементов. Разнообразие вихронов такое же, каково разнообразие форм атомно-молекулярного вещества.

Вихроны могут рождаться не только в переменном электрическом поле стационарных зарядов, когда один из зарядов начинает движение на сближение. Этот процесс возможен и в переменном магнитном поле в момент разрядки через посредство первично-рождённого электромонополя. Кроме того, если имеются условия длительного вращения нейтрального или магнитозаряженного кластера (газового, жидкого, твёрдого или фазы агрегатного состояния материи в форме ЧСТ) материи вокруг собственной и стационарной оси, атомно-молекулярное вещество в таком кластере, как и при производстве магнитов, способно поляризоваться с образованием собственных векторных монополей всех трёх видов — электрического, магнитного и гравитационного. Однако эти монополи будут жёстко связаны с источником, и поэтому названы связанными с массой макровихронами. Этот процесс обнаружен при вращении кластеров твёрдых тел, магнитных тел, а также при вращении ядер пульсаров. В последнем случае ядра ЧСТ рождают связанные переменные гипервихроны, которые аналогично замкнутым вихронам[178], способны рождать (инверсия магнитных полюсов звёзд и активных планет) переменные противоположные магнитные монополи, на переходных участках диполи и квадруполи, а также дополнительные векторные гравитационные и электрические монополи.

Итак, электромагнитные вихроны — это микровихроны, макровихроны и гипервихроны, в свободной, замкнутой или связанной форме, энергетически лёгкие атомные или «тяжёлые», отягощённые плотностью зёрен-потенциалов их волноводов, со спином полной или частично-квантовой завершённостью волновых процессов. Магнитные заряды в свободных вихронах превращаются при разрядке в противоположные через посредство противодействующих им электрических монополей. Последние способны, взаимодействуя с внешним электрическим полем, затормозить и остановить магнитный с квантовым переходом его в гравитационный монополь, образовав тем самым пару замкнутых и противоположных вихронов той или иной корпускулярной микрочастицы с полуцелым спином. В атомных микровихронах этот процесс отражает физический смысл постоянной Планка. Магнитные заряды в них могут иметь широкий диапазон от элементарного до максимальных планковских значений величины энергии. «Тяжёлые» вихроны от СВЧ до ИК-диапазона при взаимодействии с веществом способны создавать связанно-замкнутые микровихроны[179] — в их фазовых обёмах находится большое количество атомно-молекулярного вещества. Вихроны могут взаимодействовать с внешними электрическими и гравитационными полями, а также с плазмой атомно-молекулярного вещества во всех её агрегатных состояниях, видоизменяясь, нагревая и изменяя атомный и ядерный состав окружающего вещества.

2.2.2 Тепловые и звуковые микровихроны

Взаимодействие ЭМВ с веществом. Явление теплового эффекта[180] при воздействии инфракрасного (ИК) излучения на вещество было впервые обнаружено Уильямом Гершелем. Это эффект прямого преобразования энергии электромагнитных микровихронов в механическое колебательно-вращательное движение[181] молекул или атомов вещества, т. е. механическое[182] движение микрочастиц, обладающих массой, и, как следствие, рождение гиперзвука с частотами от 109 до 1013 Гц, т. е. поток фононов и ротонов. Такое механическое движение в веществе характеризует его температуру и взаимодействие фононов с его электронами проводимости. Обратный эффект изменения состояния — нагревание кластеров вещества[183], молекулы которых начинают двигаться более интенсивно, чем при нормальных условиях, приводит к излучению электромагнитных фотонов в этом же ИК-диапазоне 3 х 1011 — 3 х 1014 Гц, т. е. с длиной волны от одного миллиметра до одного микрона, охватывая при этом, от 107 до 104 атомных слоёв в жидкости или твёрдом теле. Возможен и третий эффект — охлаждение вещества при производстве электрического тока в устройстве Свита Флойда, но тока со странным и противоположным свойством при коротком замыкании не плавить место контакта, а превращать его в иней. Аналогичный эффект наблюдается и в эффекте Пельтье, в котором при переходе контакта электроны проводимости передают избыточную энергию колебательно-вращательным движениям атомов в кристаллической решётке проводника, нагревая его или охлаждая, поглощая эту энергию.

Механизм воздействия источников, приводящих во вращение атомы и молекулы в веществе в САП неизвестен. Из анализа резонансных тепловых, электрических и ядерных эффектов, возникающих при прохождении лёгких и «тяжёлых» микровихронов ИК-излучения через вещество следует, что физическим механизмом фотон-фононого преобразования является частотный резонанс электромонополей микровихронов и его волноводов с электрическими полями атомов и молекул при прохождении магнитных зарядов в фазовом объёме вихронов вблизи узлов волн, а также магнитной раскрутки кластеров атомов магнитными зарядами, находящимися в фазе уже ближе к пучности волны. Магнитные заряды их фазовых объёмов, взаимодействуя при самовращательном движении с магнитными зарядами (магнонами) кластера частиц, составляющих из атомов и молекул сферические слои этого кластера, приводят во вращательное движение не только эти слои с количеством от 104 до 107. Когда магнитные монополи названных микровихронов проходят узлы волноводов, где заряд максимален, а размер может быть гораздо меньше даже размера атомных ядер, их электромонополи уже способны раскручивать и отдельные атомы, ионизировать их и их атомные ядра, увеличивая в целом внутреннюю энергию, линейные и объёмные размеры кластера вещества. Вдоль созданных ими волноводов возникают вихревые электрические токи и изменяется его первичный химический состав. Другими словами, увеличение внутренней энергии вещества и изменение его первичного химического состава происходит за счёт привнесения энергии электромагнитными микровихронами путём вращательно-струйнойимплозии[184] их магнитных зарядов и установки ими соответствующих волноводов. В процессе механической раскрутки микрочастиц с массой начинают заряжаться гравитационные монополи, которые при разрядке порождают звуковые фононы и ротоны гиперзвука. Если гравитационные монополи достаточно «тяжелы», то в процессе их разрядки образуются очень «плотные» гравитационные потенциалы, уже способные создавать вихревые токи из электронов проводимости. Таким образом гиперзвук способен рождать электрический ток, но производимый не электропотенциалами, а гравпотенциалами, что и наблюдается в устройстве С. Флойда.

Пример обратного фонон-фотонного взаимодействия гиперзвука со светом заключается в изменении показателя преломления ЭМВ под действием резонансной волны — дифракция света на ультразвуке.

Таким образом существует прямые квантовые переходы резонансных взаимодействий между электромагнитными и механическими микровихронами — определим такие переходы как двадцать четвёртое свойство электромагнитных вихронов.

Итак, изменение внутренней энергии одного атома порождает или поглощает фотон, а изменение внутренней энергии коллектива атомов кластера вещества порождает или поглощает кванты звука. Если этот коллектив атомов по массе превосходит значение планковской массы (2,2 х 10-5 г), то гравитационные взаимодействия и квантовые явления начинают превалировать над электромагнитными. К таким изменениям может приводить поглощение энергии ИК-излучения веществом, механический удар, электрический разряд, локальный термический нагрев кластера вещества, детонация и взрыв химического или ядерного заряда и т. д. Например, тепловой нагрев кластера кристалла твёрдого тела, увеличивает среднее межатомное расстояние в этом кластере и порождает такие явления, как увеличение его объёма и теплопроводность, которое осуществляется посредством фононов, способных с помощью вихревых токов атомов, возникающих на волноводах из гравпотенциалов после разряда гравитационного монополя, переносить энергию состояния[185] нагрева от одного кластера к другому. При этом главную роль играет длина свободного пробега при колебаниях[186] атома вблизи положения равновесия. Это явление и есть самое элементарное и самое высокочастотное проявление звука, т. е. гиперзвука, так как его верхняя граница длины волны может быть только больше удвоенного межатомного расстояния и соответствует частоте 1013 Гц. При этом следует отметить, что амплитуда колебаний атомов существенно меньше их межатомного расстояния. Область звуковых частот снизу неограниченна — в природе встречаются ифразвуковые колебания с частотой в сотые и тысячные доли герц. Частотный диапазон гиперзвуковых волн имеет ограничения, вызванное атомным и молекулярным строением среды. В газах длина волны может быть только больше длины свободного пробега молекул. Поэтому верхняя граница гиперзвука в газе 109 Гц.

Основное свойство звука, распространяющегося в какой-либо среде вещества — это перенос энергии[187] звуковой волны посредством механического состояния атомов. Заметим, что в ЭМВ перенос энергии происходит за счёт самодвижения переменного магнитного заряда, не имеющего массы.

Как происходит этот перенос или как происходит самодвижение звука?

Здесь уже уместно заметить, что источника самодвижения, порождающего структуры механического «фотона»-кванта[188] звуковых волн, как и механизма его самодвижения в САП, автором в открытой литературе данных не обнаружено, как это положение существует и со структурой электромагнитного фотона. Другими словами, на микроскопическом уровне физический механизм распространения звука неизвестен. Законы распространение звуковых волн определены лишь на основе экспериментальных данных и носят, исключительно математически феноменологический характер.

Источниками квантов звука могут быть, как и при рождении фотонов, быстрое изменение энергетического состояния атомов, в данном случае, механического состояния коллектива атомов, образующих связанную систему масс. Механизм распространения звука — зарядка потока гравитационных монополей. Из анализа воздействия ИК-излучения на атомы, исследований механизма электрогидравлического разряда Л. А. Юткина, механического удара по твёрдому телу, детонации и последующего взрыва, следует, что всегда вынужденное изменение состояния поступательно-вращательного движения кластера вещества даже на пределе длины свободного пробега атомов при колебательно-вращательном движении их около положения равновесия в веществе индуктирует пакет гравитационных монополей. Это аналог индукции магнитного монополя в изменяющемся электрическом поле, т. е. в механически возмущённом пространстве покоящейся атомно-молекулярной среды. Такое пространство-среда должно состоять из подвижных микрочастиц с массой — атомы, молекулы, ионы, электроны и т. д. Например, при механическом ударе по кластеру твёрдого тела, т. е. в связанной системе масс, в его пространстве приходят в движение атомы, сохраняя своё инертное состояние покоя. Это движение сложное и состоит из механических колебательно-вращательных движений атомов около положения равновесия и их вынуждено-возмущённого путём удара поступательного движения из состояния инертного покоя. Такое синфазное движение коллектива атомов приводит к зарядке потока микросфер из потенциалов гравитационных монополей, т. е. носителей квантов индуктированной энергии — кластеров вихревых полей. Сливаясь в один, они уже образуют суммарный гравитационный заряд со структурой (фиг.2.1) подобной структуре магнитного монополя. Далее следует разрядка этого монополя в пространстве кластера с производством волноводов из гравпотенциалов — с этого момента начинается жизнь механического микровихрона. После чего, вдоль них синфазно возникают вихревые токи атомов, которые квантовано переносят соответствующую энергию материи в различной форме (давление, плотность, температуру и т. д.) и они же регенерируют-заряжают новый коллектив противоположных по знаку гравмонополей впереди на ¼ длины волны и на новом месте. При этом скорость распространения звука уже определяется продольной составляющей винтового движения атомов вдоль потенциалов волновода и соизмерима с их тепловой скоростью. Синфазное движение атомов приводит к созданию фронта звуковой волны. Это и есть ответ на вопрос — зачем нужна среда для распространения звука и чем обусловлена скорость звука в ней? При распространении звука в среде индуктированные гравмонополи меняются по знаку последующими вихревыми токами микрочастиц вдоль потенциалов волноводов — этим обеспечивается полное квантовое преобразование индуктированной в гравмонополе энергии при сохранении средней.

Термические колебания атомов кристалла вызывают распространение в веществе системы звуковых волн, квантами которых являются фононы. Фононы и их взаимодействия с электронами играют фундаментальную роль в современных представлениях по физике сверхпроводников, процессах теплопроводности, процессах рассеяния в твердых телах. Законы распространения волн — дифракция, интерференция, отражение, преломление одинаковы и для электромагнитных волн и для звука. Однако есть отличия в потенциалах на волноводах и скоростях распространения звука и света. Электромагнитные вихроны устанавливают электрические потенциалы, которые вызывают вихревые электрические токи в проводниках, а механические — гравитационные потенциалы, которые вызывают вихревые токи микрочастиц с массой и формируют тем самым фронты давления и скорости их движения, а также, в некоторых случаях, — вихревые токи ионов и электронов. Поэтому при распространении звуковой волны происходит следующее:

— на расстоянии в полволны амплитудное значение давления из положительного становится отрицательным, т. е. разница давлений в двух точках, отстоящих друг от друга на полволны пути распространения волны, превышает в два раза.

— давление, оказываемое на частицы среды при распространении волны, является результатом действия вихревых токов вдоль потенциалов волновода.

— частицы среды, участвующие в вихревых токах при передаче энергии волны и электрического заряда, колеблются около положения своего равновесия.

На основании этого можно сделать заключение о том, что при переносе энергии звука происходит полное квантовое преобразование энергии вихревой материи микрочастиц с массой в этих волновых процессах, т. е. данный механический микровихрон является свободным.

Взаимодействие света со звуком (и наоборот) используется в современной оптике, оптоэлектронике, лазерной технике для управления когерентным световым излучением. Акустооптические устройства позволяют управлять амплитудой, частотой, поляризацией, спектральным составом светового сигнала и направлением распространения светового луча. Из прикладных аспектов акустооптических эффектов практическое применение имеют системы обработки информации, где акустооптические устройства используются для обработки СВЧ-сигналов в реальном масштабе времени.

Фононы и ротоны — элементарные высокочастотные проявления механических вихронов. Физический смысл появления ротонов соответствует появлению вихревого движения микрокластера в сверхпроводящей жидкости. Энергетический спектр элементарных возбуждений в жидком гелии имеет линейную зависимость в начальной части. Локальный минимум энергии соответствует температуре около 8,6 K. Элементарные возбуждения линейной части спектра соответствуют рождению фононов, а возбуждения в области, близкой к минимуму — рождению ротонов. Они тесно связаны с электромагнитными фотонами и электронами среды. Фононы взаимодействуют не только друг с другом, но и с другими квазичастицами, как с электронами проводимости в металлах и полупроводниках, так и с магнонами в магнито-упорядоченных средах. Испускание и поглощение фононов электронами — основной механизм электрического сопротивления металлов и полупроводников.

2.3 Электрон — позитрон

Скажи мне, что такое электрон,

и я объясню тебе всё остальное.

В. Томсон

Электрон, как замкнутое, а поэтому инертное и стабильное микропространство, обладает структурой, внутренними и внешними физическими свойствами. Его комптоновская длина[189] волны составляет величину 2,4 х 10-10 см. Дебройлевская[190] длина волны электрона в атоме (т. е. размер сферической области, в которой электрон, будучи связан электрическим полем ядра, уже перестаёт существовать со свойствами свободного электрона) в нормальных условиях рекомбинационного теплового равновесия составляет величину 10-7 — 10-8 см, а в условиях вакуума космоса в областях с температурой близкой к абсолютному нулю приближается к 10-3 — 10-4 см. Таким образом, высоковозбуждённые состояния атомов, имеющие на поверхности Земли очень короткое время жизни, в глубинах космоса практически стабильны.

У электрона самая минимально возможная масса[191] инертного покоя (511 Кэв), однако эффективный размер фазового объёма волноводов составляет величину 1,2 х 10-10 см и существенно превосходит размеры атомного ядра. Его стабильное по возрасту жизни микропространство имеет полуцелый спин и отрицательный (позитрон — положительный) заряд 1,6 х 10-19 Кл, а также собственный магнитный момент, равный магнетону Бора.

Электроны рождаются в природе, с одной стороны, при образовании заряженных ядер химических элементов, путём распада нейтральных ядер, в процессах бета-распада ядер атомов химических элементов, при распаде нейтрона и других нестабильных элементарных частиц. А с другой стороны при взаимодействии фотонов с атомно-молекулярным веществом в различных агрегатных состояниях — фотоэффект[192] и пар — образование. Свойства структуры электрона, кроме названных явлений, могут также дополнить распады короткоживущих элементарных частиц, таких как мюон, а также весьма загадочные явления бета-распада кобальта-60, нейтрона и некоторых других частиц. В этих превращениях ориентированные по спину внешним магнитным полем распадающиеся ядра излучают в одну сторону больше электронов, чем в другую. Это же явление наблюдается и у античастиц. Эксперименты, выполненные в этом направлении с 1956 по 1964 мировым научным сообществом, показали о наличии у электронов, позитронов и других микрочастиц сложной лево и право вращательной структуры.

Дополнительная информация по структуре электрона может быть получена из ответа на вопрос о его электрическом заряде и массе покоя. Достоверно установлено, что электрические заряды раздельно существуют в двух видах — положительные и отрицательные. При этом разноимённые заряды притягиваются, а одноимённые отталкиваются. В квантовой электродинамике понятия знака заряда не существует, а позитрон описывается как электрон, движущийся обратно во времени.

Внешнее проявление свойств формы волноводов электрона с вращающимся полярным магнитным монополем — это его спин, электрический заряд, геометрическая структура и индуктируемая масса[193] (в терминах системы СИ или СГС), а также бесконечно долгое время жизни. Внутренние свойства электрона, ответственные за это внешнее проявление, обусловлены процессами, происходящими в резонансном полярном вихроне, в котором магнитный монополь периодически и всегда движется-вкручивается (имплозия осевая) в одном направлении в сторону к центру поверхности полусферы, где исчезая, преобразуется в гравитационный монополь. Последний, разряжаясь (внутренняя спираль разрядки гравитационного монополя, показанная на фиг. 2.8) в поле волновода (внешняя спираль), опять реанимирует его — индуктирует и заряжает магнитный монополь и так до бесконечности. Другими словами, бесструктурной точечной пассивной массы электрон не имеет, а имеет внутренний волновод из гравпотенциалов, который, создавая внешнее гравитационное поле, взаимодействует с центральным гравитационным полем Земли, инертен и проявляет собственную массу. Точно также внешний волновод из электропотенциалов формирует отрицательный электрический заряд электрона.

Для наглядности проиллюстрируем сказанное графическими схемами фазового объёма электрона и его возможных состояний.

Фиг. 2.8 Схема электрона, обозначенная электро (синими) и гравпотенциалами (красными) его волновода.

На этой схеме не указана структура динамики переменных гравитационного и магнитного зарядов, а также их внешних полей, как двух форм энергии источников движения в замкнутом пространстве.

На фиг. 2.9 показана упрощённая схема процесса индукции поляризованного магнитного монополя (чёрный шарик) в замкнутом объёме электрона пространственной разрядкой гравитационного монополя (зелёные шарики на красном внутреннем волноводе). После того, как в поле атомного ядра, магнитный монополь фотона поделился пополам (чёрный конус), он до полной остановки во время торможения превратился-зарядился в свой аналог, источник движения в замкнутом объёме — гравитационный монополь (зелёный шарик в центре на поверхности волновода), как процесс противодействия изменению скорости. Поэтому его структура аналогична структуре магнитного монополя (фиг.2.1). Однако некоторые его свойства отличаются от свойств магнитного. В отличие от магнитного он производит волновод из зёрен-гравпотенциалов без посредства участия других полей, т. е. без противодействующего электрического вихревого поля, как это происходит с магнитным зарядом фотона. Имеются и другие существенные отличия. В свободном вихроне фотона зарядка магнитного монополя находится в функции противодействующего предыдущему электрического монополя. В замкнутом вихроне электрона эта функция возлагается на гравитационный монополь. Общее для обоих — зарядка магнитного монополя происходит без возбуждения вторичных полей.

Разрядка гравитационного монополя — это вращательное движение по внутренней красной спирали, т. е. движение спирального зелёного тора. Во время этого движения происходит развёртка-установка[194] своих же зёрен-потенциалов массы на внутреннем волноводе от большего до меньшего, которые при достижении замкнутости поверхности электрона во внешнем пространстве, как от стационарного источника, индуктируют массу и электрический заряд электрона. Структура значений потенциалов сферы гравитационного монополя, аналогична магнитному — большей сфере спиральных волноводов из зёрен соответствуют меньшие значения по абсолютной величине, а меньшей — наибольшие значения потенциалов. Поэтому, когда гравитационный монополь разрядился, его наибольшая сфера в этот момент находится в точке волновода с максимальной пучностью, откуда начинал свою зарядку и движение вновь индуктированный магнитный монополь сферой большего радиуса, а в данный момент заканчивает свою зарядку сферой меньшего диаметра (положение, чёрный шарик на фиг. 2.9). Итак, разряжаясь из центральной точки расположения зелёной сферы, гравитационный монополь создаёт волновод из зёрен-потенциалов (масса), и заряжает магнитный монополь, который, как и в фотоне, создаёт волновод из зёрен-электропотенциалов. Волновод из зёрен-гравпотенциалов и создаёт постоянное внешнее гравитационное поле — массу покоя электрона.

Фиг. 2.9 Схема процесса регенерации магнитного монополя гравитационным.

Итак, перед моментом исчезновения сферы заряженного до максимума магнитного монополя гравитационный монополь тоже почти зарядился до своего максимального значения и имеет вокруг себя максимально возможное центральное внешнее поле, которое способно взаимодействовать с другими окружающими полями, в том числе с атомно-молекулярным веществом и полем тяготения Земли. Эти внешние поля на схеме не указаны, так как имеют лишь мгновенные значения. Таким образом суммарные внешние локальные поля электрона формируются постоянными из волноводов с зёрнами-потенциалами и переменными из самодвижущихся сфер-зарядов магнитного и гравитационного монополей.

Рождение электронов и позитронов возможно не только с помощью фотонов в поле атомного ядра. В основном, эти частицы появляются в результате распада атомных и нейтральных ядер в аналогичном поле, в том числе при распаде нейтронов (фиг. 2.10). В этом случае электроны образуются в результате последующих распадов внешней оболочки, состоящей из двух противоположно-заряженных замкнутых оболочек-волноводов частиц со структурой типа мюонов, в поле ядра. При распаде нейтрона волновод электрона образует вылетивший соответствующий магнитный монополь, формирующий частицу типа отрицательного мюона, которая нестабильна и распадается с образованием электрона и антинейтрино — волновод старой внешней оболочки без магнитного заряда. А так как его частота уже (часть энергии идёт на вылет антинейтрино) существенно меньше материнского вихрона, то он строит новую оболочку, получая при этом скорость, способную преодолеть притяжение протона. Теперь эта оболочка-волновод представляет собой полусферу электрона, соответствующую своей формой новым параметрам полярного дочернего вихрона. При этом, радиус волновода полусферы (рис. 2.10) электрона увеличивается на три десятичных порядка по сравнению с внутренними оболочками протона и составляет величину 1,2 х 10-10 см.

Фиг. 2.10 Распад нейтрона

Итак, взаимная непрерывная и периодическая индукция-реанимация двух монополей в замкнутом волноводе носит бесконечный во времени процесс, вызванный сходящимся вращением и увеличивающимся значением магнитного монополя по спирали волновода электропотенциалов форме полусферы, в центре поверхности которой он исчезает, заряжая и переходя в сферу гравитационного монополя. В этой точке, перед тем как произойдёт такой квантовый переход, концентрируются одна в одной две изменяющиеся сферы-зарядов максимальных значений этих монополей. Схему процессов в фазовом замкнутом объёме электрона можно также представить, как периодическая зарядка[195] сферы магнитного заряда на пути создания им внешнего пространственного волновода электропотенциалов и одновременная зарядка сферы вторичного гравитационного монополя. Затем разрядка сферы гравитационного заряда с построением пространственного внутреннего волновода гравпотенциалов и опять последующей индукции магнитного заряда.

Зёрна-потенциалы — это соответственно заряженные бесструктурные микрообъёмы-зёрна пространства с эффективным размером много меньшим 10-28 — 10-33 см и цветом[196], характеризующим статическое поле заряженного электрического, магнитного или гравитационного источника.

Для наглядности проиллюстрируем сказанное графическими схемами фазового объёма электрона и позитрона, его возможных состояний. На Фиг. 2.4 приведены схемы рождения электрона и позитрона, его электрических потенциалов-зерен на волноводах и магнитного поля. Индукция векторного гравитационного монополя свидетельствует о переменном[197] магнитном токе и жёсткой связи с ним в замкнутом микропространстве. Структура размещения гравитационных потенциалов, индуктирующих такой заряд, осесимметрична, с увеличением значений к центру поверхности. А наличие электрического заряда того или иного типа лишь результат статической индукции внешнего поля[198] соответствующими электропотенциалами, размещёнными с определённой плотностью на внешнем волноводе. Полусфера электропотенциалов волновода снаружи и изнутри охвачена торроидальным магнитным полем.

Точечных в состоянии покоя и бесструктурных разнополярных электрических и магнитных зарядов[199], как одной из форм существующей материи — нет в природе, как нет и бесструктурных гравитационных зарядов. Существуют лишь носители-волноводы, которые индуктируют своими потенциалами в некоторых точках пространства около них центры электрических и гравитационных зарядов, т. е. в точках центр сферы или центр поверхности полусферы, фокус полуэллиптической поверхности и т. д. Таким образом, индукция электрического заряда электрона обусловлена электрическими потенциалами волноводов в форме спиралей, размещённых на полусфере, сохраняемых и восстановляемых движущимся всегда на зарядку в одном направлении полярным магнитным монополем.

Сверхсветовое вращение (зарядка) с центростремительным ускорением магнитного заряда по волноводу в замкнутом фазовом пространстве электрона индуктирует в нем определенные инертные свойства, присущее всем механическим гироскопам — это и есть инертность и гравитационная масса покоя. Источник индукции векторной гравитационной массы — это вращаюшийся магнитный монополь — источник движения. В центре полусферы волновода магнитный монополь исчезает, но появляется полностью заряженный гравитационный монополь. Собственный неполно-квантовый переход магнитного заряда в фазовом объёме электрона индуктирует внешнее свойство называемое спином, т. е. неполную единицу заряда электромагнитного колебательно-вращательного движения. Полярный вихрон электрона своим фермионным магнитным монополем формирует половину такого заряда, т. е. половину постоянной Планка. Его движение по спиральным волноводам этого шнура от большего диаметра к центру за время 10-20 с, индуктирует собственный векторный гравитационный монополь. А отрицательные электрические потенциалы волноводов (геометрическая структура) формируют такое внешнее электрическое поле, какое сформировал бы точечный бесструктурный электрический заряд величиной 1,6 х 10-19 Кл, размещенный около центра полусферы. Спин можно определить ещё как маленький магнит с двумя полюсами. Тогда электрон можно представить как, периодическое вращательно-поступательное движение магнитного монополя в одном направлении по сходящейся в одну точку спирали, что и эквивалентно такому элементарному магниту. Электрическое поле, образованное потенциалами внешнего волновода, снаружи воспринимается, как поле электрического заряда, размещённого в центре полусферы под волноводами, хотя на самом деле его там нет.

Возникает вопрос: почему электрический заряд электрона и протона одинаков и противоположен, несмотря на такую большую разницу в размерах волноводов?

Это связано с плотностью размещения зёрен-потенциалов на соответствующей полусфере. Суммарный поток потенциалов-зёрен на поверхности полусферы любого радиуса от виртуального заряда, размещённого в центре поверхности этих полусфер для этих микрочастиц, везде одинаков и соответствует минимально возможному и равному заряду электрона или позитрона.

Образование атомов водорода становится возможным только тогда, когда дебройлевские размеры длины волны становятся одинаковыми, как для электрона, так и для протона. При соответствующей скорости движения электрона его волновод становится излучательной антенной для свободных дебройлевских фотонов, но при тепловых скоростях рекомбинации с протоном[200], этот волновод превращается в часть сферического (эллиптического) замкнутого дебройлевского волновода с длиной волны 10-4-10-8 см и образует одну из разрешенных оболочек[201] общей системы, т. е. замкнутого и возбуждённого микропространства атома, фиг.2.11.

Фиг.2.11 Связанный с ядром электрон — атомная оболочка протона

Так для плазмы водорода, находящейся в атмосфере Солнца, его электроны находятся уже в таком связанном состоянии даже при температурах от 2200 º С до 5000 º С, а в холоде и вакууме космоса ридберговский атом водорода с «n»[202] равным или более 100 может существовать также бесконечно долго, как и атом водорода с «n» равным единице на поверхности Земли. Эта причина препятствует, наряду с названным барьерным дефицитом энергии, захвату этого электрона протоном[203] — это фундаментальное явление, в результате которого образовались всё атомно-молекулярное вещество на поверхности Земли. Однако обратный процесс становится всё же возможным, но только для мюонов, у которых этот размер соизмерим с внешними оболочками протона.

Отсюда следует немаловажный вывод — отсутствие необходимости привлечения механизма орбитального движения электронов в атомах вокруг ядер.

И здесь самый главный вывод о том, что производство атомно-молекулярного вещества происходит только в сильных гравитационных поясах планет, а не в космическом вакууме вдали от тяготеющих источников.

Аннигиляция электрона и позитрона (Фиг. 2.12) происходит

Фиг.2.12 Схема аннигиляция электрона и позитрона

следующим образом. Охлажденные свободные электрон и позитрон, фокусируясь внешними электрическими полями, сближаются и проходят волноводами сквозь друг друга, взаимно нейтрализуя противоположные потенциалы волноводов, т. е. запирающие электрические поля. В этот момент замкнутые противоположные монополи освобождаются от запирающих их электрических полей и становятся свободными. Замкнутое движение гравитационного монополя сменяется на свободное движение вихрона. Образуется промежуточное состояние, называемое пара-позитроний со спином равным нулю. Это состояние имеет форму фазового пространства π-ноль мезона (спин равен нулю), поэтому распад идет в основном по каналу испускания двух квантов с энергией 511 Кэв. Или другими словами, освободившиеся монополи, вылетая из микропространства промежуточного состояния со структурой π-ноль мезона, формируют свободные фазовые пространства двух самодвижущихся фотонов с частотой первичных вихронов электрона и позитрона.

2.4 Мюоны

Мюоны — это промежуточные состояния распадающихся микрочастиц, входящих в состав ядерных оболочек. Мюоны имеют электрический заряд со спином ћ/2, время жизни 2,2 х 10-6 с и массу в ~207 раз больше массы покоя электрона, т. е. 105,66 Мэв. Структура и механизм индукции массы аналогичен процессам, происходящих в электроне. Абсолютное значение электрического заряда соответствует заряду электрона и позитрона. Структуры микрочастиц типа электрона и мюона — это основные структуры, образующие оболочки атомов и ядер, способные уже, в отличие от мезонов, существовать самостоятельно от связей в ядре со спином ½ более длительное время. В процессах распада мюонов рождаются электроны, позитроны и сопровождающие его соответствующие нейтрино и антинейтрино. Комптоновская длина волны мюонов в 207 раз меньше, чем у электронов, но в 10 раз больше чем у нейтронов. Дебройлевская длина волны тепловых мюонов соизмерима с аналогичным параметром внешних оболочек тепловых протонов, поэтому процесс захвата ими мюонов идёт легко с образованием малых по размеру мезоатомов, отличных по свойствам от атомов водорода.

Основными источниками производства мюонов в природе являются процессы, которые происходят при столкновениях солнечных протонов с ядрами атомов газов, наполняющих атмосферу. Механизм производства — ионизация ядерных частиц (типа мезонов), образующих оболочки ядер атомов и последующий их распад в более долгоживущие частицы с тем же спином, т. е. в мюоны со знаком плюс и минус. Другие процессы, приводящие, в конечном итоге, к мюонам — это рождения пар — мюонов фотонами высоких энергий в верхних слоях атмосферы, а также в мантии Земли при распаде ядер. На уровне моря мюоны образуют основную компоненту до 80 % от всех частиц космического излучения. Мюоны регистрируют в глубине мощных слоёв континентальной поверхности Земли. В подземных экспериментах мюоны регистрируются на глубине в несколько километров. Находясь в плотных слоях грунтов континентов, мюоны захватываются ядрами атомов на возбуждённые орбиты мезоатомов, затем следует каскадный переход на К-оболочку этого мезоатома и последующий ядерный захват мюона, приводящий к соответствующей ядерной реакции. Экспериментальные данные показывают, что во всех известных взаимодействиях мюоны проявляют себя также как электроны и позитроны, отличаясь от них лишь массой. По этой причине мюоны можно рассматривать как «тяжелые» электроны, которые заменяют последних при образовании мюонных веществ и минералов в плотных слоях мантии, где практически отсутствует свободное пространство и всякое поступательно-колебательное движение ядер атомов. Энергетически тепловое проявление таких процессов выражается лишь вращением вокруг собственной оси. Поэтому распад нейтральных ядер и нейтронов идет с образованием заряженных ядер и мюонов. Электроны, имеющие размер в 207 раз больше мюонов, не способны образоваться в условиях даже верхней мантии.

Для исследований конденсированного состояния вещества с помощью мюонов и мезонов построены мезонные фабрики-ускорители для получения пучков высокой интенсивности.

Конец ознакомительного фрагмента.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Вихроны. Иллюстрированное издание предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Примечания

50

Предыдущая глава — пространства и материя, поля стационарных источников.

51

Из всего известного диапазона электромагнитных волн.

52

Например, для водорода это серии фотонов Бальмера, Лаймана и Пашена.

53

Однако в этом случае уже рождаются «тяжёлые» электромагнитные фотоны.

54

Известно определение потока как параллельное движение частиц. В данном случае рассматривается вихревой квантово-последовательный поток частиц.

55

Вблизи мощных радиотехнических антенн или при разрыве мощного тока пучка электронов, обрыве тока электрической дуги и в момент сближения до 0,01 мм контактов вилки и розетки тоже генерируется переменное электрическое поле, но создаются таким полем «тяжёлые» магнитные монополи с гораздо большей плотностью зерен-потенциалов — витки спиралей примыкают вплотную друг к другу (амплитуда импульса), плотность размещения зёрен на спиралях близка к насыщению (ток в импульсе).

56

Эти частицы впервые опубликованы в открытой печати на страницах этой книги.

57

Протон излучает зёрна-потенциалы, а электрон их поглощает.

58

Эффективное поле напряжённости представляет собой две полусферы каждая, из которых является зеркальным отражением другой от нулевой потенциальной плоскости, проходящей посередине между этими источниками.

59

Если эту плоскость рассматривать как зеркало, то другой заряд будет его зеркальным отражением.

60

Силовые линии — это направления излучения потока зёрен-потенциалов, а их искривление показывает взаимодействие с другим источником, в данном случае поглощение.

61

Это свойство ответ-обоснование на технологию производства электрической компрессии энергии методом укорочения импульса напряжения вплоть до пикосекундных значений.

62

Изменение происходит благодаря статической индукции со скоростью много большей скорости света по механизму, рассмотренному в предыдущей главе.

63

Заметим, что зарядка формирует внешнее входящее поле, и только для такого поля свойственен процесс слияния-объединения микромонополей одного знака.

64

Это процесс электростатической индукции, в зоне индукции около стационарного источника.

65

При аналогичном формировании магнитного заряда техническими средствами — это импульс напряжения вблизи источника, его передний или задний фронт и ток в таком импульсе.

66

Сжимается в случае, если электрон в атоме переходит в основное состояние, т. е. приближается по радиусу к ядру.

67

Взрыв проволочек, разрыв тока электрической дуги и т. д.

68

Такие магнитные заряды замечены на поверхности Солнца.

69

На этом свойстве основана и мозговая деятельность человека — монополь способен не только записать событие с помощью зерен-электропотенциалов в соответствующем узле головного мозга, но и при определённом воздействии на этот узел, активизировать обратное рождение монополей с пересылкой их в «ретранслятор» для вспоминания тех или иных событий человеком, произошедших с ним даже несколько десятков лет назад.

70

Очень важно, зарядка в центр — формируется сфера, разрядка — формируется волновод.

71

Синфазность — главное свойство для слияния и преобразования электрической энергии в магнитную и её кумуляция в одном монополе.

72

Этот предел определяется степенью кривизны, количеством монополей и значением их величины, т. е. некоторый набор соответствующей материи для создания завершённости свободного существования этого вихря-кванта.

73

Реально, движение по спирали задаёт монополь.

74

Как показал спектрометрический анализ света далёких звёзд, такая информация может передаваться с расстояний свыше 1028 см, но с «покраснением» частоты квантов.

75

Во время такого процесса «тяжёлый» магнитный монополь СВЧ диапазона способен ещё проникать в атомные ядра и ионизировать его оболочки.

76

Переменного магнитного диполя.

77

В узле максимальное значение потенциалов, в пучности — нулевое.

78

Именно эти резонансные потенциалы, привносимые в соответствующее электрическое поле атома магнитным монополем, переводят атом из основного состояния в возбуждённое или ионизируют его — фотоэффект.

79

Согласно принципу детального равновесия.

80

Исполнение полного квантового преобразования носителя индуктированной энергии в свободном вихроне — волновое движение материи.

81

Волновой, кинетический или дебройлевский.

82

Рассмотрена только дипольная индукция вторичного магнитного монополя, а существуют ещё и квадрупольная и другие менее значительные вклады при изменении первичного монополя.

83

Сначала происходит формирование нулевых потенциалов с большой сферы, затем максимальных на малом радиусе в узле фотона и потом опять ослабляются потенциалы по величине до нуля на большом радиусе, т. е. зарядка-разрядка.

84

Следует особо зафиксировать это явление, имеющее своё название — инверсия полюса магнитного поля. Причём в случае фотонов эта инверсия имеет одинаковый период для того и другого полюса, как и в случае магнитного поля Солнца — гипервихрона.

85

Его основное назначение — это волновод с электропотенциалами.

86

Половина фазового объёма фотона, т. е. поверхность отрицательных потенциалов, индуктирует во внешнем пространстве электрическое поле от виртуального отрицательного единичного заряда, равного заряду электрона, а другая половина — заряду позитрона.

87

Со скоростью света.

88

Например, если в качестве источника использован лазер.

89

Согласно САП из сингулярной точки с плотностью 1094 г/см3.

90

С частотами соответствующими, частотам замкнутых вихронов, образующих ядерные оболочки, т. е. более 1023 Гц.

91

С длиной волны более 10-10 см.

92

В том числе рентгеновские, оптические и радиоволны.

93

Имеется ввиду, что само движение вихрона определяет знак и величину спина — целая постоянная Планка или полуцелая.

94

Время жизни атомных возбуждённых состояний или время перехода характеризуется величиной 10-8 с, а ядерных — 10-20 с, у молний это время достигает десятков миллисекунд, у «тяжёлых» СВЧ десятки пикосекунд и мощных токов в переменных импульсах.

95

Таким образом рождается масса и инертность элементарных частиц.

96

Дальнейшее свободное движение микровихрона прекращается электрическим полем ядра, т. е. электрический монополь вихрона взаимодействуют с этим полем.

97

И уже здесь надо отметить, что микроскопические уравнения Максвелла необходимо не только делать симметричными, но дополнить индукцией гравитационного монополя в некоторых случаях и с учётом планковской массы.

98

Такие явления обнаружены в атмосфере Юпитера и Солнца.

99

Такой объём соизмерим с фазовым объёмом длины волны от 10 см до 10 микрон (от 3 до 3 х 104 ГГц) СВЧ излучения.

100

Для краткости изложения в этот термин будем вкладывать смысл частот ЭМВ, включающих длины волн от одного миллиметра до одного микрона, т. е. практически весь ИК-диапазон.

101

Рождение пар элементарных частиц таких как электрон-позитрон и пары противоположных мюонов — это характерные фотоатомные реакции.

102

Это замечено в выбросах солнечной плазмы — электромонополь макровихрона захватывает кластер плазмы фотосферы, а через некоторое время «выплёвывает» его из своего фазового объёма, создавая при этом характерную картину — пары тёмных и светлых пятен.

103

Энергия материи, заключённая в кванте магнитного «тяжёлого» заряда, превосходит энергию ионизации частиц с внешних оболочек атомного ядра, поэтому называть такие ядерные реакции низкоэнергетическими можно лишь условно в силу истории их открытия.

104

Это совокупность статики и динамики.

105

В данной книге принято для удобства восприятия называть электрический диполь, а магнитный — биполем.

106

Условие квантования П. Дирака не ограничивает верхний предел значений магнитных зарядов. На Солнце, как будет показано дальше, практически зафиксированы пары магнитных макромонополей, соединённых частью спирали электропотенциалов — гигантский магнитный биполь. Эти два противоположных монополя не аннигилируют, а выпускают свой заряд в вихревой ток флоккул.

107

Вопрос. Магнитный поток из чего от таких зарядов? Ответ — из зёрен-потенциалов.

108

Электростатический диполь ядра и электрона возбуждённого атома.

109

Баланс сил квантования.

110

Зона индукции.

111

Здесь конкурируют два процесса: статическая индукция от создающихся магнитных монополей и вихревая индукция от изменения электрополей вокруг электрона-излучателя, создающих эти монополи.

112

Магнитный монополь это не вихрон, а одна из его вихревых компонент, а вот его свободное движение с вихревой индукцией электрического монополя, и «скелет» из электропотенциалов — это и есть вихрон.

113

Реально он создаёт в процессе зарядки сначала зёрна-потенциалы, соответствующие своему внешнему диаметру, а затем центру сферы, потом начинается процесс разрядки его заряд уменьшается и опять он имеет заряд, соответствующий потенциалам большей сферы.

114

Доказательством вращения магнитного монополя вокруг электрического является конус А. Пуанкаре (1896 г.).

115

Если начать отсчёт времени в момент разрядки магнитного монополя.

116

На окружности минимального радиуса вблизи этой точки находятся максимальные по абсолютному значению электропотенциалы.

117

Не электромагнитный, в силу причинно-следственной связи.

118

Такой вихрон можно назвать и пульсирующим биполем.

119

Эта система в основном используется при проведении экспериментов.

120

Диполем обычно определяют связанные стационарные электрические заряды.

121

То есть геометризованных зерен фиксированных микропространств, относительно стабильное положение которых в гравитационном пространстве защищёно протекторным магнитным полем.

122

М. И. Солин (2001 г) предложил использовать в качестве детектора магнитных зарядов затвердевающий расплав циркония, который фиксирует все ядерные и электротоковые превращения, вызванные прохождением монополей.

123

Промежуток времени и скорость излучения, поляризация и интенсивность.

124

Этот процесс называется самоструктурированием той или иной микрочастицы в зависимости от окружающих полей, т. е., например, в мантии Земли нейтрон при распаде превращается в протон или антипротон и соответствующие мюоны, а не позитрон и электрон. Аналогично, нейтральные ядра распадаются с образованием положительных или отрицательных ядер.

125

Поле можно менять по разному: 1.изменять собственно поле, 2. двигать один из зарядов диполя навстречу другому, 3.обрыв тока путём взрыва проволочек, обрыв тока дуги, 4. подавать на электроразрядный промежуток импульс напряжения с фронтом 10-12 секунды, 5. на излучатель-антенну подавать переменное напряжение, например, СВЧ диапазона.

126

В природе при определённых условиях могут образовываться и более низкочастотные свободные и замкнутые нестабильные полевые коллективные макровихроны в форме лидеров линейных и шаровых молний.

127

Характер движения вихронов в замкнутых волноводах в корне отличается от движения в свободном пространстве.

128

Деление тяжёлых ядер идёт за счёт распаковки и новой перепаковки внутренних оболочек с образованием примерно двух одинаковых осколков, где ядром «конденсации» одного из осколков является захваченный нейтрон.

129

Природа щедро потрудилась в своих подземных лабораториях, создавая тяжёлые атомные ядра и вкладывая в них огромную энергию при синтезе, тем самым аккумулируя её в несметных количествах — компрессия энергии.

130

Вихревые токи нашли широкое применение для разогрева пищи в микроволновых печах, а также в промышленности для разогрева до высоких температур твёрдых металлических образцов.

131

Такая связь создана на частоте близкой к инфракрасной и оптической, она прозрачна в вакууме, но поглощается проводящей средой, преобразуя всю энергию вихронов в LENR и вихревые токи — зарядовые кластеры К. Шоулдерса, эктоны Г. А. Месяца, плазмотроны, микроволновые печи и т. д.

132

Магнитный монополь П. Дирака, то есть магнитный заряд, находится в розыске с 1931 г. и до сих пор является актуальной темой исследований. Тем не менее, большой заслугой Л. И. Уруцкоева, С. В. Адаменко и М. И. Солина есть выявление и первая попытка доступной идентификации магнитных монополей СВЧ диапазона — 109-1013 Гц.

133

134

Не забывая при этом в причинно-следственной связи, что масса и электрический заряд — это следствие движения вихрона в этой частице, например, электрон.

135

При этом необходимо учитывать в причинно-следственной связи приоритет вихронов.

136

Зерно-потенциал есть «кирпич» бесструктурного микропространства с минимально возможным размером, заряженного определённым потенциалом (количественно и качественно определённым цветом) и ограниченного тонкой плёнкой невещественного пространства.

137

Даже, если произвести в них соответствующие замены на магнитный монополь Дирака и сделать их полностью симметричными относительно электричества и магнетизма.

138

Имеется ввиду вихрон фотона, как один из его примеров.

139

По две, в начале и конце ¼ длины волны разрядки и зарядки.

140

В этих центрах идёт производство соответствующих электропотенциалов.

141

Минимальный заряд электрического монополя равен заряду электрона.

142

Имеется ввиду образование спиралевидных шнуров пространства, образующих сфероподобную поверхность, заряженных положительными или отрицательными потенциалами-зернами.

143

Тороидных мультиполей, анаполь простейший, начальный.

144

Магнитный и электрический полевой ток соответствующих монополей.

145

При вращательно-поступательном или только вращательном движении гироскопов такие гравпотенциалы являются опорой постоянного направления оси вращения, т. е. массы.

146

Вот именно поэтому до сих пор магнитные монополи не были обнаружены.

147

Кластер ионов атомной плазмы обладает уже некоторой массой покоя, а поэтому электрический монополь, жёстко связанный с магнитным, становится инертным и визуально наблюдаем, что и наблюдается практически — ВЧ и СВЧ излучение хорошо поглощается плазмой, структурируя последнюю модуляцией новой формы и свойств.

148

Зарядовые кластеры К. Шоулдерса, 5 патентов США №№ 5 018 180 — 5 148 461 за 1991-92 годы и соответствующие статьи и монографии от 1987 года.

149

Однако такое явление реализуется лишь при больших плотностях потоков СВЧ-вихронов.

150

С точностью разрыва в центре вихрона на размере ¼ спирали длины волны.

151

Более слабые потенциалы формируются на внешней сферы, а более сильные ближе к центру. Несколько таких синфазных сфер зоны индукции, сливаясь друг с другом, образуют квант магнитного монополя.

152

Как это предложено в разделе «Пространство и материя».

153

Здесь речь идёт не о магнитных полюсах постоянных магнитов, а о магнитных зарядах, которые существуют только в движении.

154

Имеется ввиду набор зеркальных вихронов.

155

То есть, так названых в САП частиц, сформированных противоположными-зеркальными вихронами. Реально в природе — антинейтрон также падает на Землю, как и нейтрон.

156

То есть смена направления магнитного поля — кольцо силовой линии левого винта, меняется на правое.

157

Минимальный магнитный квант потенциалов равный 2,0678х10-7 Э. см2 формирует магнитное поле от элементарного пульсирующего магнитного заряда.

158

Фильм «Our secrets Sun», 2-я часть, магнетизм, автор доктор Ken Lang.

159

Это всего лишь «вмороженный» след из возбуждённых частиц плазмы.

160

Эти законы рассмотрены в разделе «Пространство и материя».

161

Так, например, хорошо изучен гигантский резонанс ядер гамма-квантами с энергией до 25 Мэв и более до 2,5 Гэв, и как следствие, распаковка внутренних оболочек — фотоядерные реакции с фоторождением мезонов-пионов при пороге в 150 Мэв. Сечение взаимодействия пучков пионов с ядрами по сравнению с фотоядерными реакциями в 137 раз больше.

162

Уруцкоев Л. И. и др. 2000–2007 г.г. в журнале «Прикладная физика», ФИАН, «Курчатовский институт», ядерный реактор М. И. Солина, 1994–2002 г.г. и др.

163

Если объёмный фазовый объём (фиг.2.2) этих фотонов разрезать плоскостью, проходящей через его ось, то получится фигура идентичная той, что показана на микрофотографии.

164

В данном случае частота фотона составляет величину 1013 Гц и принадлежит диапазону ИК-излучения.

165

Более точно, обрыв тока кластера электронов вблизи анода при импульсе нарастания напряжения до 500 Кв в вакуумной камере может создавать широкий спектр вихронов вплоть до оптических и максимумом плотности потока фотонов с длиной волны 20–50 мкм.

166

Следует заметить, что на верхнем Вилюе, в Якутии, в известной аномальной зоне издавна находили металлические «котлы» на поверхности земли — продукты мощных магнитных зарядов. Аналогичные сферы из псевдометалла находили в шахтах Клерксдорпа, Южная Африка, возраст которых оценивается в 3.5 млрд. лет.

167

Как показано эквспериментально длина волны этих СВЧ находится в пределах до 20–50 мкм, но эти фотоны отличаются от атомных фотонов значениями тока и напряжения импульсов зарядки их магнитных монополей при производстве — «тяжёлые» фотоны.

168

Точнее, его сопутствующим электромонополем и волноводом вихрона.

169

Слабое взаимодействие.

170

Это достигается полной обдиркой всех атомных электронов-степень полной ионизации.

171

Если такой импульс напряжения подавать в вакууме, как это делается при реализации дальней космической связи, то последний прозрачен для вихронов.

172

А для наносекундных импульсов, как у С. В. Адаменко, этот размер составляет 100 мкм.

173

Уруцкоев Л. И. с сотрудниками, 2000–2007 г.г. Это излучение магнитных макромонополей СВЧ частот, коллективное и эффективное воздействие которых с большой плотностью потока на тяжелые атомы, закреплённых в кристаллической решётке твёрдого тела, приводит их в состояние ядерной трансмутации.

174

Плюмы, всплывающие из ядра Земли — вещество нехимического состава, при ядерно-химическом превращении которых образуются его энергия движения, обычные вещества и газы, извергающиеся во время вулканической деятельности.

175

В открытой литературе известные как трансмутация химических элементов.

176

Трансмутации ядер химических элементов, В. Ф. Балакирев, В. В. Крымский,(2003 г.), Гареев Ф. А. (2005 г.).

177

При такой аннигиляции также идет последовательная распаковка внешних оболочек протонов.

178

Отличие связанных с массой вихронов от замкнутых микровихронов заключается в том, что они способны также порождать ещё и мощное переменное электрическое поле.

179

По типу зарядовых кластеров К. Шоулдерса.

180

Увеличение или уменьшение, т. е. изменение температуры кластера вещества.

181

Этот процесс аккумулирует и определяет одну из частей внутренней энергии вещества в форме вращательно-колебательной энергии атомов и молекул. Ещё имеется внутренняя энергия, запасённая в оболочках атомов и их ядер.

182

Механическое движение — это кинетическое и центробежное движение кластера масс.

183

Около 50 % солнечной энергии излучается в ИК-диапазоне. Дистанционное управление телевизором производят пультами, излучающими ИК-излучение.

184

Такой же механизм воздействия на плазму твёрдого тела наблюдается при ионизации атомных электронов и частиц с внешних ядерных оболочек, приводящий к вихревым токам в проводниках и изменению первичного химического состава вещества (LENR).

185

Очень важно — перенос состояния корпускулярного вещества с помощью механических волн из одного региона в другой. Этот процесс необходимо учитывать при исследовании «дыр» на поверхности Земли, обусловленных переносом состояния материи в мантии к поверхности коры путём мощных механических вихронов, рождаемых взрывом.

186

Линейных или вращательных.

187

Здесь имеется ввиду различные формы энергии, обусловленные состоянием вещественной материи источника, в том числе механическое и магнитное давление, плотность, температура, спин и т. д.

188

Элементарные проявления механических квантов — это фононы и ротоны.

189

Это размер области, когда частица перестаёт проявлять себя как материальная точка, и в таких взаимодействиях уже начинают проявляться некоторые структурные свойства.

190

Формальное определение комптоновской и дебройлевской длины волны одинаково, но в первом случае используется скорость света, взаимодействующих гамма-квантов с электронами, а во втором — реальная скорость движения электрона относительно ядра при которой возможно формирование атома.

191

Или, что, то же самое, собственный векторный гравитационный монополь — результат квантового перехода магнитного монополя в точке его исчезновения.

192

Явление противоположное эффекту излучения фотона, воэбуждённым атомным электроном.

193

Или собственный векторный гравитационный монополь — гравитационный заряд.

194

Установка зёрен-электропотенциалов на треке фотона производится магнитным монополем

195

Зарядка производится разрядкой гравитационного монополя.

196

Цвет и его интенсивность наполняет зёрна пространства соответствием потенциала действующего физического источника в данной точке пространства, а его квантование происходит за время много меньшее планковского и носит другую, отличную от электромагнитной, природу.

197

Движение магнитного заряда идет по спиралям разного диаметра с разным ускорением.

198

Внешнее поле на расстояниях более атомных размеров симметрично, как от точечного и бесструктурного заряда, а вблизи менее атомных, оно ассиметрично.

199

Таких зарядов, какими они определены в теории Дирака.

200

При взаимодействии волновода электрона с электрическим полем ядра.

201

С главным квантовым числом «n» от 1 до 100, до, так называемых, ридберговских состояний.

202

«n» — это главное квантовое число, степень возбуждения атомного электрона.

203

Как невозможно материальной сфере большого радиуса упасть в свой центр т. е. схлопнуться.

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я