Нанотехнологии. Наука, инновации и возможности

Линн Фостер, 2006

В предлагаемой книге авторы – известные ученые и бизнесмены, занимающиеся теоретическими и практическими проблемами нанотехнологий, – описывают состояние дел и перспективы их развития на ближайшее десятилетие, а также возможное воздействие нанотехнологий на глобальные процессы. Книга предназначена для широкого круга читателей: научных работников, специалистов, а также студентов профильных учебных заведений.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Нанотехнологии. Наука, инновации и возможности предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Раздел I

Руководство и организация

Глава 1

Уроки инновационной политики и коммерциализации, связанные с биотехнологической революцией

Джеральд Голлвас

Джеральд Голлвас имеет богатый опыт по внедрению биомедицинских технологий еще с середины 60-х годов, когда он занялся бизнесом, связанным с созданием и поставкой диагностического оборудования в известной фирме Beckman Instruments. Возглавляемая им группа успешно внедрила новую аппаратуру, основанную на кинетических измерениях скоростей химических реакций первого порядка, используемую при клинической диагностике крови. Многие годы он занимался испытаниями и поставками медицинского оборудования в США, Европе и Японии и руководил многими очень важными проектами развития и внедрения новой техники. Является специалистом международного класса по вопросам планирования, организации, маркетинга и управления. Имеет степень бакалавра по химии, полученную в университете Сан-Диего.

«Мы создаем и формируем инструменты, а позднее они начинают формировать нас самих».

Маршалл Мак-Люэн

Вообще говоря, современное общество создано успехами химии, которую можно рассматривать в качестве наиболее общей науки о веществах и материалах, из которых построены почти все используемые нами объекты, от орудий труда до принимаемых лекарств. Процесс формирования и использования новых объектов продолжается: кремниевые и германиевые чипы составляют основу электроники, водород и кислород являются главными компонентами ракетного топлива, а рекомбинантная ДНК служит для создания новых лекарственных препаратов или растений, устойчивых к воздействию пестицидов. Интересно, что роль химии в истории для многих остается до сих пор не до конца понятной, неоцененной и неясной, в результате люди чаще склонны обращать внимание скорее на недостатки химии (например, ее вред для окружающей среды), чем на то, что именно она создает множество привычных условий существования. Древнекитайская поговорка гласит, что «только дураки могут заниматься предсказанием будущего», но предлагаемая читателю книга целиком посвящена размышлениям о грядущем развитии науки, и мы вправе спросить себя хотя бы о том, какие уроки мы, собственно, извлекли из анализа бурного развития химии в предыдущее столетие? При серьезном рассмотрении выясняется, что никакого общего вывода из развития химии пока не существует, так что в качестве примера мощного развития одной из областей науки (особенно с точки зрения инноваций и коммерциализации) удобнее рассмотреть историю биотехнологии, протекавшую на наших глазах в новейшее время.

1.1. История биотехнологии

Разумеется, начало истории биотехнологии может быть отнесено к глубокой древности, однако истинным моментом зарождения современной биотехнологии можно вполне обоснованно считать открытие в 1953 году Джимом Уотсоном и Френсисом Криком структуры ДНК. Их работа придала молекулярной биологии совершенно новое научное и общественное значение[1], а предложенная модель двойной спирали была не только одновременно простой, элегантной и эффектной, но и позволила вполне разумным образом объяснить процесс воссоздания и репликации жизни на молекулярном уровне.

Открытие структуры ДНК привело к множеству новых исследований и открытий, наиболее важным из которых стала разработка техники «вырезания и склеивания». Эта работа, выполненная группой Пола Берга из Стэнфордского университета, позволила получить рекомбинантную ДНК, состоящую из кусочков от двух разных молекул ДНК[2]. Придуманная ими методика напоминает процесс монтажа в студии звукозаписи, когда оператор получает новую запись, просто вырезая и «склеивая» друг с другом куски разных магнитофонных лент. Вставив затем такую ленту в магнитофон, вы услышите единую запись, составленную из обрывков исходных мелодий.

За эту блестящую работу Пол Берг в 1980 году удостоился Нобелевской премии по химии. Интуиция с самого начала подсказывала ему, что рекомбинантные ДНК могут найти практическое применение в генной терапии. За несколько лет до этого, в 1973 году двое американских ученых (Герберт Бойер из Калифорнийского университета в Сан-Франциско и Стэнли Коэн из Стэнфордского университета) стали первыми на свете генными инженерами, так как именно им удалось не только использовать рестрикционные ферменты для избирательного «разрезания» и «соединения» кусочков ДНК, но и сделать этот процесс «промышленным». Вводя полученную таким образом составную или смешанную ДНК в организм бактерии, они смогли осуществить процесс размножения бактерий и получить миллионы «копий» своей искусственной ДНК. Это можно считать созданием первой «фабрики» по генетическому производству ДНК[3].

Новость быстро облетела научный мир, после чего множество ученых по всему миру занялись интенсивными исследованиями в области генной инженерии. Вскоре после этого генными манипуляциями всерьез заинтересовалась общественность, средства массовой информации и даже Конгресс США. Разумеется, публику напугали разговоры о возможности создания «смешанных» существ, и она настойчиво пыталась понять — не занимаются ли ученые конструированием современного Франкенштейна? Поэтому общее внимание было обращено на создание эффективной системы контроля над разработками и попытками их практического применения. Беспокойство общественности было столь велико, что в 1975 году более 100 представителей заинтересованных организаций из разных стран мира собрались в городке Алисомар (Калифорния) на конференцию, посвященную перспективам и потенциальным опасностям исследований в области рекомбинантных ДНК[4]. Конференция прошла под руководством самого Пола Берга и утвердила набор рекомендаций для Национального института здоровья США (National Institute of Health, NIH). Позднее именно эти рекомендации стали основой национальной политики США в этом научном направлении, отраженной в официальных документах 1976 года[5].

Научный успех Бойера и Коэна, сумевших внедрить определенный ген в бактерию и «размножить» его, с самого начала привлек внимание так называемых венчурных капиталистов, то есть предпринимателей, любящих вкладывать капитал с риском или в разработку и производство совершенно новых продуктов. Один из них, молодой и энергичный Роберт Свансон из Сан-Франциско, еще в 1976 году запросил Бойера и Коэна о возможности применения их технологии для организации коммерческого производства белковых продуктов, содержащих требуемые компоненты (в частности, Свансона интересовала возможность выпуска пищевых продуктов, содержащих инсулин человека)[6]. Уже в апреле этого же года Свансон и Бойер вложили по 500 долларов в организацию фирмы Genentech, ставшей первой в мире биотехнологической компанией. Почти немедленно в этой области возникла и торговая конкуренция, так как очень скоро была зарегистрирована и компания Biogen. Образно говоря, возник совершенно новый сектор наукоемкой продукции, а его первой целью стало производство коммерческих продуктов, содержащих инсулин человека.

Фирмы Genentech и Biogen выбрали различные технические средства для получения таких продуктов. Ученые Genentech бросили все свои силы на химический синтез человеческого гена, связанного с выработкой инсулина, в то время как Biogen стал развивать технику клонирования, причем выбор путей развития был обусловлен уже сложившимися обстоятельствами и условиями. Например, интерес Genentech к химически синтезируемому гену объяснялся тем, что последний не подпадал под ограничения, уже введенные Национальным институтом здоровья США, в то время как клонирование могло производиться только под контролем NIH.

Интересно и поучительно, что в начальный период развития фирма Genentech фактически представляла собой лишь зарегистрированное название, так как не имела ни денег, ни сотрудников, ни оборудования. Бойер обратился к двум своим коллегам в Национальном медицинском центре (City of Hope) с предложением заключить контракт на разработку методов синтеза инсулина человека. Речь шла об Артуре Риггзе и Кэйити Итакуре, которые в этот момент подали заявку в Национальный институт здоровья, пытаясь получить грант на изучение возможностей синтеза человеческого гормона соматостатина (эта задача выглядела более скромной, чем синтез инсулина, но ее решение открывало перспективы дальнейших разработок). Поэтому естественной кажется реакция Риггза, запросившего Бойера о возможности спонсорства фирмой Genentech сначала разработок по синтезу соматостатина. Получив положительный ответ, он образовал смешанную исследовательскую группу из сотрудников City of Hope и Genentech, которая сумела быстро добиться значительного успеха. Риггзу и Итакуре удалось внедрить кусочек ДНК человека (содержащий 21 нуклеотид) в бактерию кишечной палочки E.Coli, а затем (вместе с молодым химиком Хербом Хейнекером из лаборатории Бойера) и впервые продемонстрировать возможность функционирования искусственной ДНК в живой клетке.

Через шестнадцать месяцев команда исследователей не только успешно синтезировала ген соматостатина человека и клонировала его, но и смогла продемонстрировать возможность, как говорят биохимики, экспрессии протеинового гормона соматостатина в микробы[7], что стало первым примером успешной экспрессии белка в генетически модифицированные микробы вообще. Это достижение только подхлестнуло научную «гонку» в синтезе инсулина человека. Ценность метода Риггза — Итакура заключается в его универсальности, позволяющей использовать его для производства множества требуемых белков в бактериях-носителях. Очень быстро на его основе были разработаны разнообразные технологии, на которые было выдано много патентов (как в США, так и в других странах), а конечным результатом стало возникновение коммерческого производства фармацевтических продуктов, объем которого оценивается в миллиарды долларов. Забавно и очень поучительно, что упоминавшееся выше обращение Риггза и Итакуры к Национальному институту здоровья (с просьбой о гранте на разработку соматостатина) было отвергнуто институтом, специалисты которого посчитали проект слишком амбициозным и не имеющим практической ценности!

После успеха с синтезом соматостатина Свансон начал энергично подыскивать инвесторов для финансирования работ по синтезу инсулина. В июне 1978 года фирма Genentech наняла сотрудников и создала лабораторию вблизи аэропорта Сан-Франциско, а уже к концу августа (менее чем через три месяца!) объединенная команда City of Hope и Genentech получила инсулин человека, используя синтезированный ген. Казавшееся невозможным начинание увенчалось блестящим успехом. Замечательная история создания фирмы Genentech и возникновения целой отрасли промышленности на основе биотехнологии описана в книгах Холла и Эванса[8] [9]. Особенную ценность этим событиям придает то, что речь идет об очень редкой ситуации, когда результаты фундаментальных, академических исследований смогли очень быстро привести к блестящему коммерческому успеху, тем более что речь шла о создании промышленности буквально из «ничего», а не о «раскрутке» производства на базе уже существующего мощного рынка фармакологических препаратов.

В наши дни, через тридцать лет после возникновения, биотехнология представляет собой огромный сектор промышленности и коммерции (оцениваемый примерно в триллион долларов), производящий сотни видов разнообразных биологических, медицинских и лекарственных средств[10], и поэтому предложенные истории могут служить поучительными примерами при обсуждении проблем нанотехнологий. Речь идет в первую очередь о двух описанных ниже важнейших концепциях развития науки и технологии, связанных с инновационной политикой и коммерциализацией научных достижений вообще.

1.2. Концепция 1. Уроки S-образной кривой

Первая концепция связана с так называемой S-образной (сигмоидальной) кривой, предложенной в книге Ричарда Фостера[11] в качестве типичной Фихарактернойдлямножествапроцессов развития в науке и технике. Кривая описывает зависимость между вложениями ресурсов в технологию или процесс и соответствующей этим вложениям «отдачей» (то есть повышением продуктивности, качества и т. п.). Исследования в истории разнообразных технических устройств и их характеристик привели Фостера к выводу, что такие зависимости (напоминающие на графике латинскую букву S, как показано на рис. 1.1) являются весьма распространенными и типичными. Практический смысл S-образной кривой очень прост. В любой области усилия на разработку, затраты времени и просто капиталовложения приносят на начальном этапе развития или исследования (когда уровень фундаментальных знаний о процессе или объекте невелик) лишь небольшую пользу. Затем, по мере роста знаний и накопления опыта, эти вложения или усилия становятся все более эффективными, вследствие чего скорость развития значительно увеличивается. После некоторой критической точки развития общий процесс роста замедляется, а затем и почти прекращается, что свидетельствует о достигнутой «зрелости» технологии или изделия. В дальнейшем рост прекращается вообще.

Рис. 1.1. Типичный вид так называемой S-образной (сигмоидной) кривой развития

В качестве очень характерного примера можно привести показанную на рис. 1.2 кривую роста скорости (основной параметр) развития одномоторных винтовых самолетов практически за всю историю авиации, по данным работы[12]. Самолет братьев Райт в первом полете (1903 год) достиг скорости около 35 миль/час. Через семь лет, в 1910 году Гордон Беннет победил на авиагонках в Белмонт-Парке (Нью-Йорк), разогнав машину до 60 миль/час. По мере накопления опыта и знаний скорость самолетов медленно возрастала: 139,66 миль/час (1914 год), 145,7 миль/час (1922) и т. д. В 1925 году лейтенант Джеймс Дулитл на самолете Curtiss R3C-2 достиг 232,57 миль/час. В 1939 году рекорд скорости составил 463,9 миль/час, но на графике уже явно заметно замедление темпов роста. Следующий рекорд скорости на одномоторном поршневом самолете был установлен на гонкав в Рено (штат Невада) почти через тридцать лет и составил 520 миль/час. В 1989 году эта цифра возросла, но лишь на 9 миль/час! что наглядно свидетельствует о том, что все возможности повышения скорости одномоторных поршневых самолетов практически исчерпаны и никакого дальнейшего технологического прогресса в этой области ожидать нельзя. Продукт (в данном случае винтовые самолеты) достиг своего совершенства, и любые капиталовложения в развитие бессмысленны.

Рис. 1.2. Увеличение скорости одномоторных винтовых самолетов описывается характерной S-образной кривой

Появление и использование реактивных двигателей привело, естественно, к качественному скачку и последующему улучшению характеристик самолетов, что также описывается S-образной кривой. При сопоставлении этих кривых (рис. 1.3) отчетливо проявляется разрывность характеристик при переходе, то есть при принципиальном обновлении или смене технологий.

Рис. 1.3. Повторение S-образных кривых в истории техники

Приведенный пример роста скорости одномоторных винтовых самолетов демонстрирует одновременно две характерные особенности практически всех процессов, связанных с инновациями и коммерциализацией научных достижений. Речь идет о том, что параметры выходят на некоторые предел, а при смене технологий наблюдается разрыв в непрерывных кривых развития. Легко понять, что в начальный период развития любой технологии (нижняя часть S-образной кривой) инвестиции связаны со значительным риском и неопределенностью, но зато открывают в случае удачи большие перспективы роста и, соответственно, высокий уровень прибыльности. На среднем участке кривой возникает большая определенность ожиданий (иногда, кстати, создающая даже избыточное чувство уверенности), что приводит, конечно, и к уменьшению шансов значительного роста и быстрых успехов. Наибольший интерес представляет конечная часть кривой, соответствующая полному исчерпанию возможностей используемой технологии, но таящая в себя возможности перехода к новой S-образной кривой. На практике это означает конец развития технологии и подготовку к существенному рывку в техническом развитии. Следующий этап начинается с появления новых методов или устройств, что означает, например, переход от винтовых самолетов к реактивным, от электронных ламп — к транзисторам, от конных повозок — к автомобилям и т. д.

В описанной выше истории возникновения биотехнологии исходная S-образная кривая соответствовала существовавшей ранее коммерческой технологии производства животных белков для фармацевтической промышленности, в частности инсулина. Дело в том, что уже давно существовало развитое производство бычьего и свиного инсулина, экстрагируемого из туш животных и подвергаемого очистке. Коммерческий процесс был доведен до предела, поэтому и возник разрыв, приводящий к следующей S-образной ветви развития, основанной на принципиально новой технологии (введение синтезированного гена в бактерии и производство инсулина человека). Научное открытие непосредственно привело к развитию совершенно новой отрасли фармацевтической промышленности.

1.3. Концепция 2. Уроки коммерциализации технических новшеств

Вторая концепция, связанная с коммерциализацией технических достижений и инновационной политикой вообще, относится непосредственно к тем лицам, которые стремятся успешно внедрить новые методы и продукты. Говоря образно и одновременно просто, можно утверждать, что любая инновационная инициатива представляет собой сочетание креативности или способности к творчеству и способности к реализации замыслов. В действительности, конечно, успех предпринимателя в столь сложной ситуации требует гораздо большего. Например, успешный опыт развития биотехнологий показывает, что для успеха необходимо найти правильное сочетание нескольких факторов:

• Креативность, творческое начало

• Система управления, менеджмент

• Удачно подобранная команда

• Разумные капиталовложения

• «Попадание» в потребности рынка

Для осуществления удачного инновационного научно-технического проекта необходимо создать мощный и целенаправленный аппарат управления и междисциплинарную группу талантливых исследователей, которые при правильно спланированных капиталовложениях могут не только создать новый биотехнологический продукт, но и довести лабораторную разработку до коммерческого рынка и вернуть исходные затраты. Иными словами, коммерциализация инновационного продукта сложным образом зависит от сочетания многих факторов, то есть является, как говорят математики, сложной функцией, которая может быть выражена формальным произведением:

Коммерциализация = (Творчество х Менеджмент х Команда) (Вложения) (Запрос)

Аналогией коммерциализации, как ни странно, может служить организация музыкального концерта, успех которого тоже определяется сложным сочетанием творческого начала (композитор), менеджмента (руководитель и дирижер) и команды (состав оркестра). Кроме этого, очевидно, для успешного проведения концерта необходимы указанные в формуле вложения (они определяются верой спонсора в эстетическую ценность исполнения) и запросы (предлагаемая программа должна быть привлекательной и интересной для конкретной аудитории). При соблюдении всех этих условий и требований концерт не только доставит удовольствие аудитории, но и окупит расходы на его организацию, что и можно будет назвать успешным осуществлением инновационного проекта (в данном случае в области музыки).

В приведенном выше примере, относящемся к производству инсулина человека, творческим элементом программы стал принципиально новый метод Бойера — Коэна, вдохновивший Роберта Свансона на создание коммерческого производства синтетического инсулина. Эту задачу, конечно, нельзя было решить без создания высокопрофессиональной команды из специалистов City of Hope и Genentech. При этом Свансону удалось одновременно организовать «запуск» фирмы Genentech и найти достаточный инвестиционный капитал на стороне, то есть заинтересовать будущих потребителей (учесть потенциальный запрос рынка). Разумеется, ключевую роль сыграло то, что междисциплинарной исследовательской группе удалось, используя технологию Риггза — Итакуры, действительно получить полноценный и важный препарат, представляющий коммерческую ценность.

1.4. Общие выводы из анализа S-образных кривых развития любых технологий

• Начальный этап развития любой новой технологии представляет собой медленный инкубационный период «созревания», когда возникает множество важных проблем, требующих своего решения. Например, потребовалось около 22 лет, чтобы скорость самолетов достигла заметного значения 232 миль/час (аналогично потребовалось около 24 лет, чтобы предложенная в 1953 году Уотсоном и Криком структура ДНК воплотилась в реальную технологию производства белков в микробных носителях по методу Риггза — Итакуры). Период в 20 лет является характерным временем превращения новой научной идеи в «зрелую» технологию, что обычно и выражается S-образной кривой развития. Возможно, это просто обусловлено необходимостью разработки соответствующей инструментальной и технической базы. Отметим, что биотехнология еще находится на восходящем участке кривой, вследствие чего сейчас в лабораториях мира разрабатываются сотни новых препаратов и коммерческих продуктов.

• Каждая технология имеет собственные пределы роста. Поэтому рано или поздно описываемый процесс производства инсулина на основе биологических источников перестанет удовлетворять требованиям времени и окажется недостаточно эффективным.

• Следует помнить, что внедрение любой новой технологии всегда вызывает массу скептических замечаний с самых разных сторон (включая другие группы исследователей, средства массовой информации, Конгресс, правительственные учреждения и «сообщество» инвесторов). Разрыв между повторяющимися ветвями S-образной кривой развития всегда вызывает тревогу, означая разрыв с установившимся порядком, то есть потерю определенности и уверенности. С другой стороны, именно эта ситуация позволяет перейти к следующему витку развития и существенному повышению качества продуктов.

1.5. Общие выводы из анализа коммерческих инноваций в области биотехнологий

• Развитие инновационных технологий всегда требует творческого подхода и решительных действий. Конечно, ключевым моментом выступает само научное открытие или изобретение, однако его технологическая реализация и связанный с этим коммерческий успех могут быть обеспечены лишь эффективным менеджментом и сильной командой исследователей, зачастую из разных отраслей науки.

• Очень часто ценность новых технологий трудно оценить или обосновать. Выше уже упоминалось, что Национальный институт здоровья США отказался финансировать проект производства соматостатина по методу Риггза — Итакуры, посчитав его амбициозным и не имеющим практической ценности. Позднее выяснилось, что научные эксперты, средства массовой информации и правительственные организации ошибались.

• Для успеха в инновационных проектах необходимо обладать развитой фантазией и даже некоторой «мечтательностью». Именно такими качествами обладал Роберт Свансон, сумевший воодушевить целую группу других исследователей, что привело не только к значительному научному успеху, но и к созданию новой отрасли промышленности с многомиллиардным объемом производства.

• Нахождение источников финансирования затруднено на начальном участке S-образной кривой развития, когда инвесторы не уверены в потенциальной ценности исследований и будущих продуктов. Например, производство соматостатина вообще не вызывало энтузиазма у инвесторов до тех пор, пока научные достижения не продемонстрировали реальную возможность коммерческого получения инсулина человека. На следующем этапе, разумеется, проблема инвестиций решается значительно легче.

1.6. Будущее нанотехнологии

Только дурак может заниматься предсказаниями будущего

(древнекитайская поговорка)

Предсказание будущего действительно является рискованным и неблагодарным занятием. Для предвидения возможностей развития в любой области человеческой деятельности недостаточно иметь только обширные знания и опыт, а необходимо еще обладать интуицией, позволяющей угадывать фантастические возможности, скрытые в парадигмах существующей науки и технологии. Речь действительно идет об угадывании, а не о расчете, прежде всего потому, что физические законы окружающего нас мира могут «изменяться» при переходе к другим условиям или другому окружению. Особенно заметны такие изменения в ситуациях, когда технология используется в иных масштабах (например, в атомномолекулярных). В мире нанометровых объектов и процессов зачастую совершенно теряют смысл привычные физические понятия типа массы, инерции и т. п., так что обычная механика (используемая, например, для создания и вождения автомобиля в нашем мире) становится бесполезной.

Представим, например, что мы опускаем соломинку в стакан с водой или коктейлем. В привычном нам макромире уровень воды в соломинке совпадает с общим уровнем в стакане (или, строго говоря, близок к нему). Однако если вместо соломинки использовать капиллярную трубку, то уровень жидкости в ней будет значительно превышать общий, поскольку внутри очень тонких трубок начинают проявляться капиллярные свойства жидкости, связанные с молекулярными взаимодействиями. Говоря проще, изменение масштабов объекта или процесса приводит к резкому изменению правил физической «игры» и проявлению новых свойств, которые нельзя было предвидеть заранее. Именно это и происходит в науке и технологии, как только исследователи начинают работать в диапазоне наноразмеров.

Вообще говоря, для успешного исследования явлений природы от ученого требуется прежде всего здравое понимание фундаментальных принципов науки и границ их применения. Ученый должен проверять применимость этих принципов на каждом этапе исследований, что, кстати, наглядно демонстрирует упоминавшаяся выше история с синтезом инсулина группой Бойера, Риггза и Итакуры. Отказавшие в гранте специалисты Национального института здоровья вовсе не были недобросовестными или неквалифицированными экспертами, но им просто не хватило опыта и «фантазии», чтобы представить себе процессы, основанные на совершенно новых принципах. Таким опытом и интуицией обладал Бойер, которому удалось убедить в своей правоте (попросту говоря, «продать» идею) Свансона, взявшего на себя практическую организацию новой технологии. Ему удалось найти финансирование для исследований по синтезу соматостатина, что и привело в дальнейшем к успеху в производстве инсулина.

Приведенные выше примеры и концепции из истории биотехнологий, конечно, весьма упрощают картину развития, которая в действительности выглядит значительно более сложной, однако наличие S-образных кривых и разрывов на них является фундаментальным и общим явлением для развития любой научной или технической отрасли. Кстати, эта закономерность прекрасно подтверждается и на современном этапе перехода от привычных биотехнологий к нанотехнологиям. Например, существующие биотехнологии основаны на использовании природных ферментов, которые химики и биологи (благодаря своим знаниям и мастерству) научились «вырезать» и «вставлять» в нужные места на молекулах ДНК. Такие генные манипуляции с естественными ферментами и являются основой технологии, превращающей бактерии в своеобразные фабрики или химические реакторы для производства требуемых препаратов и веществ. Однако сейчас становится ясным, что дальнейший прогресс в этой области будет связан с множеством новых явлений, наблюдаемых в нанометрической области. Для коммерциализации новых методик ученым необходимо получить более достоверные сведения об этих процессах и научиться уверенно управлять ими. Любое серьезное открытие в этой области имеет шанс найти свой «рынок», получить инвестиции и быстро развиться в полноценное и высокоэффективное коммерческое производство.

В качестве интересного и поучительного примера можно привести следующий. Еще в 1905 году Вильям Кобленц из Национального бюро стандартов США (Вашингтон, округ Колумбия) сумел обнаружить и изучить связь между химической структурой молекул и их спектром поглощения в инфракрасном диапазоне излучений[13]. Это замечательное научное открытие долгое время оставалось лишь базой для красивых теоретических работ, и лишь в 1942 году на его основе был создан первый коммерческий образец инфракрасного спектрометра. В настоящее время такие приборы (позволяющие измерять поглощение света в виде функции от длины волны) используются практически в любой лаборатории, но их развитие сдерживалось отсутствием спроса. Острая потребность в таких спектрометрах возникла только в годы Второй мировой войны (в связи с развитием производства синтетического каучука), в результате чего почти немедленно было создано мощное коммерческое производство, удовлетворяющее постоянно растущую потребность рынка. Возможно, в случае нанотехнологий мы столкнемся не с бурным развитием, а с постепенным, эволюционным расширением рынков и производств.

Прогнозирование будущего — сложная и рискованная затея, но я предложу читателям простой мысленный эксперимент. Попробуйте представить себе историю развития и постепенного улучшения свойств волокон. Когда-то человечество пользовалось только натуральными волоконными материалами (пенька, шелк и хлопок). Улучшение характеристик описывалось одной S-образной кривой до тех пор, пока не появились синтетические волокна типа нейлона. Количество и качество таких волокон постоянно увеличивается, а общие тенденции их развития описываются другой, но тоже S-образной кривой. В настоящее время нанотехнология позволяет создавать совершенно новые материалы и волокна на их основе, так что я предлагаю читателю (опираясь на технический опыт, интуицию и фантазию) попробовать представить следующую S-образную ветвь развития, а также подумать о необычных применениях таких волокон, возможной технологии их производства и коммерческой ценности в различных областях.

Именно такие размышления можно назвать прогнозом развития нанотехнологий, и им посвящена данная книга.

Глава 2

Нанотехнология и глобальная энергетика

Ричард Смолли

Знаменитый ученый Ричард Э. Смолли, выпускник Принстонского университета, прославившийся своими работами в новейших областях химической физики, долгое время (1996–2002) возглавлял Центр нанонауки и технологии в университете Райса, а затем до своей смерти (октябрь 2005 года) был директором Лаборатории нанотехнологии углеродных материалов в этом университете. Он получил огромное число научных премий и наград, включая Нобелевскую премию 1996 года по химии. Наибольшую известность Р. Смолли принесло открытие молекулы Ctio (более известной под названием бакминстерфуллерен или просто бакиболл и фуллерен), представляющей собой сферу типа футбольного мяча из 60 атомов углерода. Эта молекула и другие ее модификации стали еще одной формой существования углерода в природе (помимо алмаза и графита). Фуллерены не только стали объектом для множества интересных физико-химических исследований, но и позволили организовать производство самых разнообразных материалов нового типа, на основе чего уже возникла новая отрасль производства. Р. Смоли основал в феврале 2000 года весьма успешно развивающуюся инновационную компанию Carbon Nanotechnologies Inc.

В последнее время я все более утверждаюсь в мысли, что основной проблемой, стоящей перед мировым сообществом или даже человечеством вообще, станет то, что мне хочется назвать «тераваттным вызовом». Я хочу сказать, что изучение всех материалов, связанных с развитием энергетики, показывает, что в ближайшем будущем нам понадобятся тераватты энергии (напомню, что приставка тера означает триллион, то есть увеличение в 1012 раз). Население планеты в ближайшем будущем достигнет десяти миллиардов человек, и для обеспечения достойного существования и развития этого огромного количества людей мы должны существенно повысить объем используемой энергии.

Собственно говоря, энергетический вызов всегда стоял перед человечеством. Энергетика обеспечивает существование человечества, и нам нельзя забывать, что объемы запасов нефти и природного газа уже сейчас вызывают серьезное беспокойство специалистов. Жизнь должна продолжаться, и это диктует настоятельную необходимость поиска новых источников энергии для начинающегося столетия. Даже самые простые расчеты демонстрируют, что к середине XXI века уровень энергопотребления человечества возрастет по меньшей мере вдвое, так что мы должны срочно научиться производить большие количества энергии за счет новых процессов. Задача осложняется и тем, что источники энергии должны быть не только воспроизводимыми, но и экологически чистыми, то есть не связанными, например, с дальнейшим повышением уровня двуокиси углерода в атмосфере, что уже сейчас становится крайне опасным. Источники энергии должны быть также дешевыми, хотя бы для того чтобы человечество могло сохранить международный мир и процветание, а не погрязнуть в войнах за природные ресурсы.

Энергетика представляет собой сейчас наиболее крупный и основной сектор мировой экономической системы вообще, и годовые расходы на нее можно оценить примерно в 3 триллиона долларов. Следующим по размеру сектором выступает сельское хозяйство, на которое человечество затрачивает примерно в два раза меньше (несмотря на его важность и распространенность), а глобальные расходы всех стран (включая США) достигают примерно 0,7 триллиона долларов в год. Человечество стоит перед настоятельной проблемой нахождения новых источников энергии, которые должны заменить нефть, бывшую основой развития в прошлом столетии.

Мне приходится довольно часто выступать перед публикой, и я обычно прошу слушателей составлять списки проблем, которые они считают наиболее важными для развития человечества вообще. На основании многочисленных опросов разных аудиторий я составил приведенный ниже общий список, который возглавляет слово энергия, практически всегда упоминаемое в таких перечнях одним из первых. Вот как выглядит перечень важнейших мировых проблем на основе моих простых опросов:

1. Энергия

2. Водные ресурсы

3. Пища

4. Состояние окружающей среды

5. Бедность и нищета

6. Терроризм и войны

7. Болезни

8. Малограмотность

9. Демократия

10. Перенаселенность

Я придаю энергетической проблеме важнейшее значение еще и потому, что ее решение значительно облегчило бы нам борьбу с бедностью, нищетой, болезнями и другими трудностями. С другой стороны, я также убежден, что без новых источников энергии мы просто не сможем справиться с большинством из перечисленных выше проблем, и попробую доказать это следующими рассуждениями.

Например, недостаток водных ресурсов является серьезнейшей проблемы для многих регионов мира. Собственно говоря, на планете полным-полно воды, но она по большей части является соленой, а во многих случаях просто находится очень далеко от тех мест, где в ней ощущается острая потребность. Сейчас мы можем с уверенностью сказать, что эффективное опреснение морской воды технически вполне осуществимо, так как некоторые нанотехнологии обеспечивают практически 100 %-ную очистку (впрочем, воду всегда можно очистить от солей, просто вскипятив ее и осадив пары). Проблемы опреснения и водоснабжения упираются только в возможности энергетики, так как, имея достаточно энергии, мы могли бы спокойно перекачивать воду из одних районов (где она в избытке) в другие, тем самым гарантируя процветание целых регионов. Столь же очевидно, что решить проблему водных ресурсов без достаточного количества производимой энергии невозможно.

Следующей проблемой в списке обычно выступает обеспечение населения Земли питанием, что очевидно связано с сельским хозяйством и проблемой водоснабжения. Для повышения урожайности требуются удобрения, производство которых тоже зависит от энергетики, не говоря уже о пищевой промышленности, транспортировке продуктов и т. п. Во всех случаях решение большинства задач упирается в возможности производить и передавать энергию.

Столь же очевидно значение энергетики для экологии, так как состояние окружающей среды в огромной степени определяется способами производства, хранения, передачи и потребления энергии. Собственно говоря, именно создание экологически безопасных источников энергии является важнейшей задачей почти для всех природоохранных мероприятий и действий.

Производство дешевой, экологически чистой и доступной энергии и является сейчас основной проблемой человечества. Только новые источники энергии могут обеспечить процветание человечества и дальнейший прогресс науки. Возвращаясь к списку, отмечу, что ни одна из других проблем не является столь объединяющей и важной, как энергетическая.

Таким образом, человечество просто вынуждено срочно искать новый источник энергии, который помимо всех указанных требований должен быть чрезвычайно мощным, поскольку речь идет о тераваттах энергии. Как ни странно, такой источник существует и его использование зависит только от нашего таланта и изобретательности. Я говорю о солнечной энергии, которая превращает в безлюдные пустыни обширные участки нашей планеты. Именно эту задачу я называют «тераваттовым вызовом» человечеству — для дальнейшего роста и развития оно должно в ближайшие десятилетия найти методы утилизации солнечной энергии.

О других источниках энергии не стоит даже говорить серьезно. Запасы полезных ископаемых (например, каменного угля) незначительны, а их добыча представляется малоэффективной. Чудовищное количество необходимой человечеству энергии (десятки тераватт!) может быть обеспечено только ядерной энергетикой. Источником энергии Солнца также являются ядерные и термоядерные реакции, так что в настоящий момент ее использование представляется единственным выходом из положения. Каждый день наша планета получает от Солнца 165 000 тераватт энергии, а для решения всех энергетических проблем необходимо лишь 20 тераватт. Природа создала огромный источник энергии, но человечество еще не научилось достаточно эффективно им пользоваться.

2.1. Транспортировка и хранение энергии

Я потратил много времени, пытаясь придумать какую-либо глобальную схему энергоснабжения планеты, разумную с точки зрения экономики и технологии. Основная идея заключается в том, что к 2050 году человечество должно прекратить совершенно бессмысленную транспортировку огромных масс топлива (угля, нефти и т. д.) по всей планете, а должно научиться передавать энергию именно в виде «энергии». Для этого нам следует прежде всего создать нечто вроде глобального «хранилища» энергии в виде сетки или «паутины» (из сотен миллионов соединенных друг с другом энергетических сайтов), позволяющей наиболее эффективным образом перераспределять потоки электрической энергии.

Рассмотрим, например, существующую сейчас систему электроснабжения всей Северной Америки, от Полярного круга до Панамского канала. К 2050 году эта система будет действительно включать в себя сотни миллионов узлов или сайтов, так что для создания реальной сети хранения энергии нам необходимо решить лишь технические вопросы, из которых существенными являются два. Во-первых, необходимо существенно снизить потери при передаче тока на большие расстояния, а во-вторых — мы должны как-то обеспечить само «хранение» электроэнергии в узлах.

Принципиально важными для функционирования и надежности такой энергетической сети являются именно вопросы хранения энергии в узлах, особенно если нам удастся создать устройства, вырабатывающие электричество на основе энергии солнечного света или ветра. Естественно, что хранение получаемой при этом энергии выгоднее организовывать вблизи центров потребления. В качестве заманчивой перспективы можно представить, что к 2050 году каждый дом, производственное помещение или организация будут снабжены собственным локальным устройством хранения электроэнергии, работающим круглые сутки. В идеале такие устройства должны быть небольшими по размеру и достаточно дешевыми, чтобы владельцы могли менять их на новые модели каждые несколько лет, поддерживая развитие такой сети и обновляя оборудование.

К сожалению, существующие устройства хранения электроэнергии еще очень далеки от предлагаемого идеала и являются очень громоздкими и дорогими (даже самые современные свинцовые аккумуляторы мощностью 1000 киловатт/час занимают несколько квадратных метров и стоят около 10 000 долларов). Однако в последние годы (во многом благодаря достижениям в нанотехнологиях) появилась реальная возможность существенного уменьшения размеров и стоимости батарей. Разработки продолжаются, и уже в близком будущем можно ожидать появления на рынке батарей такой же мощности, имеющих размеры небольшой стиральной машины стоимостью лишь около 1000 долларов. Массовое использование таких батарей будет иметь огромное значение для стабильности и надежности работы всей энергетической сети в целом, поскольку позволит снизить влияние местных флуктуаций, аварий и нарушений режима работы. Особую ценность такие устройства приобретут при внедрении новых источников энергии, связанных с использованием энергии ветра и Солнца.

Еще одно очень важное изобретение необходимо для того, чтобы мы могли передавать электроэнергию в огромных количествах (сотни гигаватт) на очень большие расстояния, например, от солнечных батарей в штате Нью-Мексико к потребителям в Новой Англии, что позволило бы производителям энергии на месте не беспокоиться об удаленности потребителей. Другими словами, необходимо создать достаточно обширную и связную энергетическую систему, объединяющую самых разных производителей энергии: экологически чистые угольные шахты в Вайоминге, ветряные установки в Северной Дакоте, газовые месторождения на Аляске, гидроэнергетические установки на севере Британской Колумбии, установки по выработке энергии из биомассы в Миссисипи, ядерные станции Хэнфорда, солнечные батареи на обширных пространствах западных пустынь и т. п. В такой сети удаленные производители и потребители энергии из самых разных областей континента могут свободно соединяться, несмотря на разделяющие их пространства. Пока такая единая электрическая система выглядит фантастикой, однако в последние годы возник проект создания нестандартной системы передачи электроэнергии, основанной на достижениях нанотехнологии. В узлах связи такой сети планируется использовать устройства из нанотрубок особого вида (так называемые а£а-нанотьюбы, образующие квантовые соединения в виде «кресла»). Научные открытия во всех отраслях энергетики (производство, передача и хранение энергии) и инновационные проекты на их основе в сочетании со здоровой конкуренцией и свободным предпринимательством производителей позволят не только решить перечисленные выше проблемы, но и создать рынки новых товаров и услуг в глобальном масштабе.

Наиболее важной технической задачей остается, по моему мнению, проблема локального хранения получаемой энергии, причем обеспечение «локальности» имеет ключевое значение. Дело в том, что основным недостатком любых установок, использующих энергию солнца и ветра (а именно эти источники рассматриваются сейчас в качестве основы будущей энергетики) является естественная неравномерность режима их работы и связанные с этим большие колебания в объеме вырабатываемой энергии, что особенно заметно при эксплуатации ветряных установок. Для таких устройств проблема хранения вырабатываемой энергии зачастую является основной, что вновь приводит нас к научным проблемам, решением которых может и должна заниматься нанотехнология. Напомню, что практически все физико-химические процессы в устройствах, обеспечивающих аккумулирование и хранение энергии (батареи, конденсаторы, топливные элементы, химические системы со связанным водородом и т. п.), происходят именно за счет наномасштабных процессов. Почти во всех случаях конечный процесс передачи заряда осуществляется группой из нескольких атомов на какой-либо поверхности. Поэтому, почти наверняка следующее поколение устройств хранения энергии будет создано на основе нанотехнологической модификации поверхностей, наноразмерных частиц катализаторов и т. д. Именно в энергетике (и особенно в решении проблем хранения энергии) нанотехнологии могут проявить свою исключительную эффективность.

2.2. Энергия для всех

Еще раз подчеркну, что я считаю проблему энергии наиболее важной для дальнейшего развития человечества. Все остальные задачи могут быть решены лишь при наличии достаточно мощных и доступных источников энергии. Проблема состоит в том, чтобы обеспечить население планеты (10 миллиардов человек в ближайшие десятилетия!) экологически чистыми, дешевыми и возобновляемыми источниками энергии. Я уверен, что эта задача может быть решена теми направлениями современной науки, где ученые уже умеют управлять веществом и процессами на атомарном уровне. Именно эти направления и объединяет нанотехнология.

Глава 3

Причудливые, странные и туманные перспективы нанотехнологии. Корабль в Саргассовом море с опасными капризами моды и агрессивными требованиями рекламы

Питер Коффи

Питер Коффи является одним из редакторов очень популярного в деловых кругах США журнала eWEEK (издание концерна Ziff Davis Media), посвященного проблемам предпринимательства и инновационной политики. Более 20 лет является одним из ведущих экспертов в области научно-технического развития вообще, выступая в качестве аналитика и консультанта и составляя обзоры по состоянию рынка и качеству новейших технических товаров в радиоэлектронике и информационных технологиях. Он также ведет известную среди специалистов редакторскую колонку «Epicenters», часто выступает по общенациональным каналам телевидения (CBS, NBC, CNN, Fox и PBS) по различным проблемам теории и практики новейших информационных технологий, организует конференции и семинары, а также выпускает книги и брошюры.

До перехода в журнал eWEEK (предыдущее название PC WEEK) П. Коффи занимал руководящие посты в фирмах Exxon и Aerospace Corporation, участвовал во многих правительственных и частных проектах, связанных с новыми технологиями (включая анализ жизненного цикла многих технологий типа x86, микропроцессоров RISC, Windows, OS/2 и т. п.), и преподавал во многих известных организациях и университетах. С его регулярными еженедельными заметками, озаглавленными Peter Coffee’s Enterprise IT Advantages, читатель может ознакомиться на сайте www.eweek.com/petercoffee.

У читателей книги и широкой общественности почти наверняка возникает наивный вопрос — а не является ли нанотехнология просто очередной модой, причудой и забавой самих ученых? Не придумывают ли они сами все эти фантастические возможности или опасности? Каковы реальные перспективы ее развития? Начальный период развития уже позади, поэтому серьезные инвесторы и ответственные спонсоры научных исследований все чаще ищут ответы на эти вопросы, решая конкретные проблемы финансирования и планирования. Мне кажется, следует начать со спокойного перечисления тех возможных сценариев развития нового направления, которые могут привести нас к разочарованию и потерям. Ввиду того что речь пойдет не о самой науке нанотехнологии, а лишь о том, как общество воспринимает ее и реагирует на связанные с ней изменения, я позволю себе несколько раскованный и образный стиль изложения. Начну с перечисления возможных вариантов развития нанотехнологии.

• Нанотехнология может оказаться еще одним «холодным синтезом», то есть научной идеей, в далекой перспективе обещающей исключительно важный результат. Ценность идеи вначале безмерно преувеличивается, а позднее все это научное направление оказывается бесплодным и «умирает», оставляя лишь память об ожесточенных дискуссиях и загубленных научных авторитетах некоторых участников.

• Нанотехнология может развиваться и по сценарию открытия «синтетического топлива» и многих других проектов, представляющих собой вначале вполне разумное и перспективное научное направление, которое позднее оказывается бесплодным (из-за экономических соображений, затянувшегося на многие годы решения побочных технических проблем или непрерывного усовершенствования и т. п.).

• Нанотехнология может представлять собой вариант проблемы «искусственного интеллекта», то есть абстрактного, но разумного научного понятия (или, точнее, наклейки, «лейбла»), которое при дальнейших исследованиях теряет собственный смысл и создает целый ряд отдельных научных направлений. Например, сейчас никто не занимается созданием «искусственного интеллекта» вообще, так как эта грандиозная научная проблема давно «распадалась» на множество конкретных задач, относящихся к вычислительной технике, компьютерам, исследованию операций, теории игр и многим другим научным дисциплинам.

Мне лично наиболее разумной в настоящее время представляется концепция развития, в соответствии с которой «корабль» под гордым флагом «Нанотехнология» действительно плывет к новым методикам преобразования энергии и вещества, хотя не исключена и возможность, что он будет бесконечно блуждать в Саргассовом море возможностей, незавершенных проектов и постоянных ожиданий.

3.1. Как не ошибиться в поисках успеха?

В этой главе мы рассмотрим некоторые весьма общие доводы и закономерности, относящиеся к развитию нанотехнологии. Существует выражение «порочный круг», описывающее ситуацию, когда каждый неправильный поступок или ошибка немедленно порождают такие же неправильные последствия. В жизни и науке этому хочется противопоставить «добродетельный круг» (тем более что по-английски эти прилагательные рифмуются: vicious и virtuous circles), когда каждое новое достижение или успех тут же создает возможность для дальнейшего успеха и прогресса. Возвращаясь к метафоре корабля, я бы сказал, что он плывет в море, полном опасностей, главные из которых можно назвать «капризами моды» и «агрессивной рекламы» в развитии самой нанонауки.

Я воспользуюсь словом fad, которое имеет много значений и оттенков смысла (фантазии, увлечения, причуды, капризы моды и т. п.), сводящиеся, в сущности, к различным определениям, которыми люди стараются как-то приукрасить или оправдать свое неправильное поведение. Термину нанотехнология грозит опасность стать примерно таким же богатым на смыслы и неопределенным понятием, так как сейчас его используют в самых разнообразных проектах и разработках, от вполне реалистических до самых фантастических. В информатике и теории связи очень важным параметром является отношение сигнал/шум, позволяющее оценить долю ценной и действительно важной информации в потоке данных, но, к сожалению, мы не можем пока классифицировать по этому параметру огромное число данных и публикаций, относящихся к нанотехнологиям, особенно учитывая их специфические и иногда поразительные особенности.

Вообще говоря, отношение общества к новым технологиям постоянно меняется, по мере того как их достижения воплощаются в реальные изделия, товары и услуги. Поэтому, задумываясь о будущем, серьезные исследователи, стремящиеся привлечь интерес инвесторов к своим разработкам, стараются быть сдержанными и точными в оценке своих возможностей. В этой связи интересно отметить, что многие из них стали в последнее время избегать излишне общего термина нанотехнология и стараются просто точно определять свою «нишу» деятельности в рамках привычных дисциплин.

Ситуация с определениями в науке и технике достаточно сложна и требует некоторых пояснений. Дело в том, что приставка нано — и определение нанотехнологический превратились сейчас в какие-то своеобразные «наклейки», которые многие авторы и организации беззастенчиво используют лишь для демонстрации высокой технологичности предлагаемых процессов или товаров. Кстати, такое поведение неоднократно повторялось в истории техники. Парадоксально, но длительное время могут существовать лишь научные «наклейки», относящиеся к очень трудным или неосуществимым замыслам (например, «вечный двигатель»), а реализация большинства технологий приводит к быстрому привыканию публики, которая затем быстро теряет интерес к новинке, после чего соответствующие термины просто исчезают из разговорной речи и рекламных объявлений. Можно вспомнить, что в 60-е годы производители новейшей радиоаппаратуры постоянно подчеркивали, что их продукция является полупроводниковой и транзисторной (в противовес старым «ламповым» приемникам и т. п.), а позднее перестали об этом упоминать вообще. Образно говоря, многие технические определения просто «выцветают», подобно обычным наклейкам на товарах.

Это явление легко заметить и в современной жизни. Старшее поколение пользователей еще использует сочетания мобильный телефон, цифровая камера и т. п., но подростки говорят просто телефон (в США подростки говорят просто фон) и камера, поскольку считают определения очевидными и привычными. Можно с уверенностью предсказать, что в период 2010–2020 гг. (когда ожидается широкое внедрение нанотехнологических товаров и услуг) приставка нано — начнет постепенно, но неизбежно исчезать из названий и рекламных плакатов.

Я хочу подчеркнуть, что нанотехнологии уже потеряли необычность и статус научной причуды, а представляют собой одну из основных тенденций развития науки и техники, своеобразный мейнстрим общественного прогресса вообще. Исследователи, инвесторы и фирмы уже оценили возможности новых технологий и все шире внедряют их в коммерческое производство (иногда с энтузиазмом, иногда — вынужденно). Нанотехнологии, которые можно назвать системой управления веществом на атомарномолекулярном уровне, уверенно занимают новые позиции в промышленности и общественной жизни.

Часто приходится читать и слышать, что нанотехнологии возникли на основе удивительных предсказаний и видений Ричарда Фейнмана и Эрика Дрекслера, которые затем нашли много практических применений. Реальная ситуация выглядит сложнее, так как, разумеется, нанотехнологии стали результатом общего развития научных концепций и методик второй половины прошлого века. Мне хочется напомнить читателю американский фильм «Старшекурсник» (1967 год), в котором преподаватель объясняет студенту, что обобщающим термином для всех веществ на свете является слово полимеры. В те годы происходило широкое внедрение полимерных товаров и изделий, вследствие чего многим людям казалось, что слова полимеры или пластики лучше всего характеризуют вещества вообще. Примерно такое же отношение наблюдается сейчас по отношению к нанотехнологиям, которые многие ученые и предприниматели стали считать самым общим символом научнотехнических возможностей.

Уже сейчас, незаметно для общественности, созданные на основе нанотехнологий отдельные детали и изделия широко используются в производстве многих бытовых товаров (например, плоские экраны телевизоров и компьютеров), а их роль и стоимость должны учитываться фирмами-производителями и экономистами. Со временем процесс внедрения новых технологий станет принимать все более широкие масштабы, существенно изменяя базовую стоимость многих распространенных товаров и услуг, а также саму структуру рынка и производства.

3.2. Агрессивная реклама

Капризы и увлечения модой могут отрицательно влиять на развитие нанотехнологий, но оборотной стороной увлечений является уже возникшая агрессивная реклама возможностей новых технологий, постоянное обещание быстрых и невиданных успехов, включая самые фантастические проекты (я обозначаю эту деятельность термином hype, которым в Америке называют беззастенчивую агитацию на выборах). Рекламная шумиха вокруг научных достижений возникала всегда, и обычно ее считают неизбежным побочным фактором технического прогресса, однако иногда она может стать серьезным препятствием на пути развития новых технологий (например, она может отвлекать внимание общественности и инвесторов от действительно интересных и важных идей и разработок).

Ответственный и серьезный исследователь всегда старается избегать участия в разработках, носящих рекламный или фантастический характер. Кроме того, настоящие ученые, хотя бы в общих чертах, хорошо знакомы с реальными возможностями существующих методик и поэтому не берутся за слишком общие и сложные задачи. Например, ответственный разработчик не будет даже пытаться быстро научить компьютер воспринимать обычную человеческую речь, так как прекрасно понимает, насколько сложна такая задача. Несмотря на огромные усилия и расходы, никому пока не удалось добиться ощутимых результатов в этом направлении, что, разумеется, нисколько не смущает создателей фантастических фильмов, в которых ЭВМ уже десятилетиями беседуют с людьми. Этот пример можно считать показательным для финансирования исследований, так как не обладающий техническими знаниями инвестор может вкладывать значительные средства во внешне эффектный проект с броским названием и привлекательной для публики идеей, оставив без внимания действительно ценную и перспективную разработку.

Аналитики известной фирмы Gartner, специализирующиеся на исследовании информационных технологий, разработали даже общую модель реализации и развития таких проектов, названных ими просто «циклами преувеличенных ожиданий». Для начала такого цикла обычно необходимо сочетание нескольких ярких технических достижений, играющих роль психологических «триггеров», то есть спусковых механизмов, вызывающих серьезный интерес и даже ажиотаж инвесторов. В истории нанотехнологии можно указать набор таких факторов, важнейшим из которых, по-видимому, явилось издание в 1986 году получившей весьма широкую известность книги Э. Дрекслера «Машины творения».

Образно говоря, сейчас в области коммерциализации технологий вообще (включая прогнозирование развития рынка и вложения венчурных капиталов) сложилась очень сложная и напряженная обстановка, которую можно сравнить с «горючей смесью», готовой вспыхнуть от небольшой искры, то есть от незначительных технических усовершенствований, ничтожного изменения условий и т. д. Для рынка этот цикл, скорее всего, будет означать безудержную рекламу и «раскрутку» того, что физики и техники называют «новым великим изделием» (эту роль в свое время сыграли лампочка накаливания, транзистор, персональный компьютер и т. п.). Серьезная опасность для развития нанотехнологий вообще состоит в том, что неправильный выбор приоритетов может привести к глубокому и долгому разочарованию в новых технологиях.

Не стоит преувеличивать мудрость и проницательность венчурных капиталистов, которые вполне могут ошибиться, особенно в критический, начальный период развития малоизвестных технологий. Как ехидно отмечал Дэвид Истмен, один ведущих экспертов крупной консалтинговой фирмы Prospector Equity Capital: «…у инвесторов есть дурная привычка подражать друг другу, в результате чего они часто начинают наперебой вкладывать капиталы в некоторые модные отрасли промышленности. Мы видели это на примере производства дисководов, оптических сетей связи и запоминающих устройств. Если в этой ситуации вложения не приносят быстрой прибыли, многие из инвесторов после 3–4 неудачных попыток быстро разочаровываются в инвестиционном бизнесе и перестают им интересоваться. При этом из-за собственной нетерпеливости они часто попадают в смешное положение, покидая созданные фирмы незадолго до того, как организуемое производство начинает приносить реальную прибыль».

Такие неудачи надолго отбивают у многих инвесторов желание заниматься инвестиционными проектами, не говоря уже о том, что создают крайне тяжелую ситуацию для основателей и технического персонала фирм. Очень часто исходного капитала хватает на первый этап развития, при котором удается довести лабораторные результаты до технологического уровня, и именно в этот ответственный момент молодая фирма отчаянно нуждается в новых капиталовложениях (на оформление документации и патентов, закупку оборудования и т. п.). Эта ситуация является довольно стандартной, и многие энтузиасты нанотехнологий уже неоднократно попадали в нее за последние годы.

Спасти растущую фирму в таких условиях может лишь умелая техническая и финансовая политика, привлечение новых инвесторов, а также энергичные поиски новых практических применений разработанных материалов и изделий. Последнее условие является очень важным, так как современное состояний нанотехнологий вообще характеризуется именно нарастанием числа приложений. Инновационная деятельность в этой области связана больше с нахождением сфер приложения, а не с обычными «войнами» на рынках сбыта традиционных товаров. Успех в развитии нанотехнологий обусловлен сочетанием научного таланта с энергичной предпринимательской деятельностью, а не с выискиванием мелких экономических выгод (например, с распространением старых музыкальных хитов по Интернету).

Следующим, менее драматичным, но очень важным этапом развития новых технологий, по мнению экспертов фирмы Gartner, выступает «закат эпохи Просвещения», выводящий производителей и потребителей на «плато производства», при котором новые идеи начинают приносить реальную прибыль. На этом этапе развития неизбежно появляются предупреждения об исчерпанности возможностей новых технологий, их неизбежной гибели и т. п., подобно тому как в развитии кремниевой полупроводниковой технологии был период мрачных прогнозов (начало 1990-х годов), закончившийся широким внедрением в практику новых материалов (арсенида галлия и т. п.).

Впрочем, поскольку нанотехнологии имеют дело с веществом в его самых фундаментальных формах (атомы и молекулы), сейчас не имеет смысла даже фантазировать о том, что ожидает нас на следующем витке развития прогресса.

3.3. Факторы, затрудняющие прогнозирование

Вообще говоря, общую картину развития нанотехнологий даже на ближайшее время сейчас трудно прогнозировать, не в последнюю очередь из-за очевидных сложностей с определениями и терминологией. Например, многие фирмы спокойно относят свои производства к нанотехнологическим, аргументируя тем, что в процессе изготовления они давно оперируют размерами точностью в несколько нанометров. В качестве наглядных примеров можно указать производство осциллоскопов (которые должны обладать полосой пропускания около 10 ГГц, для точной регистрации сигнала шириной 1 ГГц) и полупроводниковых устройств, которые давно добились нанометрической точности в некоторых производствах, где уже изготовляют детали толщиной всего 20 нм. Эта величина составляет всего 1/1000 толщины человеческого волоса, но является уже вполне разумной для промышленного производства, доказательством чего может служить обещание фирмы Intel достигнуть ее к 2012 году[14] во всех чипах для быстродействующих запоминающих устройств.

Некоторые специалисты настаивают на том, что к «настоящим» нанотехнологиям следует причислять не те, в которых обрабатываются нанометрические объекты, а лишь те, в которых на молекулярном уровне осуществляется реальный технологический контроль над размерами изготовляемых деталей. Рассмотрим, например, процесс создания углеродных нанотрубок, представляющих собой просто цилиндрические образования из пятиугольных колец диаметром около 1 нм. Должны ли мы формально причислять их к нанотехнологическим материалам, если процесс синтеза контролируется лишь в самых общих чертах? Строго говоря, мы можем утверждать, что умеем производить новый материал лишь тогда, когда научимся управлять молекулярным процессом синтеза нанотрубок и будем способны выращивать из них, например, монолитные изделия со степенью точности, уже достигнутой в полупроводникой технике. Представляется очевидным и справедливым, что реально говорить о создании новых технологий мы сможем лишь после того, как научимся не только применять, но и строго контролировать точность используемых процессов. Ради справедливости стоит отметить, что за последнее время в этом направлении достигнут замечательный прогресс, о котором раньше нельзя было и мечтать. Например, в ноябре 2004 года появились сообщения о возможности использования искусственных молекул ДНК для ориентации углеродных нанотрубок и создания на этой основе устройства типа транзистора[15]. Важным фактором современного этапа развития выступает эффект, который физики называют синергией, то есть взаимным усилением воздействия разнородных факторов или методик. Например, это может означать применение методов молекулярной инженерии не в биологии, а для совершенно новых целей и процессов.

Более того, некоторые фирмы-производители уже преодолели сложности научно-конструкторских разработок и готовы перейти к коммерческому производству новых материалов и продуктов. Например, известная южнокорейская фирма Samsung объявила о скором массовом выпуске изделий следующего поколения с использованием углеродных нанотрубок. В частности, фирма уже создала прототип нового типа плоского телевизионного экрана (известного под названием «дисплей с полевой эмиссией») и собирается в ближайшее время запустить его в производство[16]. В новом устройстве очень большая решетка высокоточных и компактных электронных излучателей будет обеспечивать свечение экрана с исключительно высокой точностью и яркостью, значительно превосходящей существующие аналоги плоских экранов. Кроме того, фирма обещает значительно снизить энергопотребление новых типов телевизоров.

Тем самым фирма Samsung бросает вызов своим конкурентам, которые должны либо быстро начать агрессивную политику инвестиций в развитие аналогичных технологий, либо заранее смириться с поражением. Читателю можно напомнить историю с положением дел в радиоэлектронике начала 1960-х годов, когда фирмы Sony и Panasonic первыми выпустили на рынок карманные транзисторные приемники, ставшие позднее символом технической революции в области полупроводников[17]. Интересно отметить, что фирма Sony вовсе не была пионером в производстве самих материалов, а начинала со сборки. Транзисторы для выпуска своих первых радиоприемников 1955 года Sony закупала на стороне, но позднее активно занялась материалами и устройствами, быстро создав технологию производства целого ряда очень популярных образцов бытовой радиоэлектроники. В настоящее время новые материалы и устройства столь же энергично разрабатывает специализированный исследовательский институт фирмы Samsung (Advanced Institute of Technology) в южном пригороде Сеула.

В этой связи следует особо отметить разнообразие свойств наноматериалов и связанную с этим возможность их применения для совершенно новых целей, которые зачастую даже не предполагались в исходных разработках. Например, многие из читателей наверняка неоднократно читали о необычных электрических характеристиках углеродных нанотрубок, позволяющих создавать новые устройства и приборы. При этом редко отмечается, что углеродные нанотрубки одновременно обладают очень высоким коэффициентом теплопроводности, что делает их весьма перспективным материалом для решения совершенно иной задачи компьютерной техники, а именно — для создания так называемой «тепловой смазки» между микропроцессорами и теплоотводами[18]

Конец ознакомительного фрагмента.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Нанотехнологии. Наука, инновации и возможности предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Примечания

1

J. D. Watson and F. H. С Crick, Nature 171 (April 25,1953): 737.

2

D. A. Jackson, R. H. Symons, and P. Berg, Proc. Nat. Acad. Sri. USA 69 (1972): 2904–2909.

3

Stanley N. Cohen, Annie С Y. Chang, Herbert W. Boyer, and Robert B. Helling, «Construction of Biologically Functional Bacterial Plasmids In Vitro», Proceedings of the National Academy of Sciences (1973).

4

P. Berg et al., «Potential Biohazards of Recombinant DNA Molecules», letter, Science 185 (1974): 303.

5

Federal Register 41, no. 131 (1976), 27911-27943.

6

S. S. Hughes, Isis 92 (2001): 541–575.

7

K. Itakura et al., Science 198 (1977): 1056–1063.

8

S. S. Hall, Invisible Frontiers: The Race to Synthesize a Human Gene (Oxford: Oxford University Press, 2002)

9

H. Evans, They Made America (New York: Little, Brown, 2004).

10

J. D. Watson, DNA, The Secret of Life (New York: Alfred A. Knopf, 2004).

11

R. Foster, Innovation: The Attacker’s Advantage (New York: Summit Books, 1986).

12

M. W. Bowman, The World’s Fastest Aircraft (Wellingborough, UK: Patrick Stephens Limited, 1990).

13

W. Coblentz, Investigations of Infrared Spectra (Washington, DC: National Bureau of Standards, 1905).

14

http://www.reed-electronics.com/eb-mag/article/CA475441?industryid=2116.

15

http://www.technologyreview.com/articles/04/12/rnb_120304.asp?p=l.

16

http://www.technologyreview.eom//articles/04/l1/mannl104.asp.

17

http://eetimes.com/special/special_issues/rnillennium/companies/sony.html.

18

http://news.corn.com/Can+nanotubes+keep+PCs+cool/2100-7337_3-5166111.html?tag=nl.

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я