Физика без преград. Увлекательные научные факты, истории, эксперименты

Валерия Черепенчук, 2017

В этой книге спрятано 99 секретов физики. Откройте ее и узнайте, как открывали Вселенную, законы притяжения и относительности и другие интересные явления вокруг нас. Картинки, фото и схемы вещей «в разрезе» покажут вам, как что устроено. Забавные и простые тексты расскажут о том, как Николай Коперник сменил картину мира, как происходит «круговорот» энергии в природе, как «шутит» инерция. Да здравствует наука БЕЗ занудства и непонятных терминов!

Оглавление

Из серии: 99 секретов науки

* * *

Приведённый ознакомительный фрагмент книги Физика без преград. Увлекательные научные факты, истории, эксперименты предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Физика макромира

№ 17

Приливы, отливы… Что их вызывает?

И Солнце, и Луна воздействуют на все находящееся на Земле согласно ньютоновскому закону всемирного тяготения. Чем ближе к небесному телу участок земной поверхности, тем сильнее действует на нем сила притяжения. Соответственно, на этом участке вода как бы «стремится» к Солнцу либо Луне и начинается прилив. На той стороне нашей планеты, которая в это время максимально удалена, соответственно, в это время идет отлив.

«Солнечный» и «лунный» приливы могут совпадать или не совпадать (в зависимости от расположения Луны и Солнца): в случае совпадения прилив получается наиболее высоким. Как ни странно, Луна, несмотря на свои небольшие размеры, оказывает большее влияние, чем Солнце, — ведь она находится ближе к Земле!

Высота прилива — величина непостоянная

№ 18

Маятник Фуко: и все — таки земля вертится!

В 1851 году в здании Пантеона в Париже появилось необычное сооружение. Член Парижской Академии наук, физик Жан Бернар Леон Фуко (1819–1868) подвесил к конструкциям купола маятник заостренной формы весом 28 килограммов. На пол был насыпан песок, а длину проволоки, на которой маятник был подвешен (67 метров), рассчитали так, чтобы острие оставляло на песке следы. Одно колебание маятник совершал за 16 секунд; было видно, что каждый новый след на песке смещается почти на 3 миллиметра по сравнению с предыдущим. Таким образом, плоскость колебания поворачивалась в сторону, противоположную направлению вращения Земли. Но маятник совершал движения только в одной плоскости! Значит, поворачивался не он, а начерченный на полу круг — поворачивался вместе с планетой Земля.

Свет не имеет массы, но имеет вес. Это значит, что свет можно изогнуть под действием силы тяжести.

№ 19

Масса и вес: в чем разница?

В повседневных разговорах мы не делаем разницы между понятиями «масса» и «вес». «Торт массой 800 граммов» или «торт весом 800 граммов»? Не все ли равно? Для физика — нет.

С точки зрения науки масса неизменна: не зависит ни от скорости, ни от системы отсчета, ни от взаимодействия с другими телами. Измеряется масса в килограммах.

Весом же именуется сила, возникающая под влиянием притяжения Земли. Эту силу тело «прикладывает» по отношению к опоре или подвесу. Измеряется она в ньютонах и рассчитывается по формуле F = mg, где m — масса тела, а g — ускорение свободного падения (ускорение, которое придает телу сила притяжения), равное ок. 9,81 м/с2.

Ну и, наконец, вес, в отличие от массы, зависит от расположения этого тела. Впрочем, о невесомости мы побеседуем отдельно.

№ 20

Хорошо висим! Явление невесомости

Мы только что выяснили, что такое масса и чем она отличается от веса. А что такое невесомость? Так принято именовать состояние, когда вес тела практически исчезает. Масса остается прежней — то есть если человек весил 70 килограммов, все килограммы останутся при нем. А вот вес…

Иногда можно услышать, что, например, на космонавтов МКС перестает действовать сила притяжения Земли, соответственно, возникает эффект невесомости. Это не совсем так.

Вспомните свои ощущения, когда лифт, в котором вы едете с верхних этажей вниз, трогается с места. Вам кажется, что вас как будто «приподнимает» над полом. Дело в том, что если тело вместе с опорой или подвесом движется вниз и при этом его ускорение направлено туда же, куда и ускорение свободного падения, то его вес уменьшается. Ускорение — это особая величина, которая показывает, насколько быстро изменяется скорость тела: отношение скорости ко времени. Если же ускорение тела стремится к ускорению свободного падения, которое, как мы помним, равняется ок. 9,81 м/с2, то вес тела стремится к нулю!

У космонавтов в невесомости часто наблюдается синдром космической адаптации

Именно в таком состоянии пребывают космонавты на станции, которые движутся вокруг Земли с ускорением, равным ускорению свободного падения. Причем не только космонавты, но и все предметы, которые их окружают. Такое ускорение именуется центростремительным. Для большей наглядности приведем высказывание одного школьника: «космонавты как бы находятся в состоянии непрерывного падения, но… не падают».

Ускорение свободного падения на полюсах Земли чуть больше, чем на экваторе, но в приблизительных расчетах обычно используется число 9,81

№ 21

Разбросала нас жизнь… «Шутки» инерции

Всем доводилось ездить в автобусе, автомобиле или метро. И все хорошо знают, что происходит, когда транспортное средство резко тормозит. Багаж сыплется с полок, а пассажиры падают друг на друга… Но, согласитесь, в этом хаосе есть своя закономерность. Люди падают — или, если торможение было не слишком резкое, наклоняются — по направлению движения. Почему?

Для этого нам нужно вспомнить рассуждения Галилея об инерции, впоследствии закрепленные в законах Ньютона: если на тело не действуют никакие внешние силы, то оно будет находиться в состоянии покоя или равномерно прямолинейно двигаться.

Но ведь ни в одной точке Вселенной невозможно избавиться от воздействия самых разных сил. Значит, вечно двигаться или вечно находиться в покое относительно любой системы координат тело не может. Но тем не менее можно сказать, что объекты «стремятся» сохранять свое состояние покоя либо движение с постоянной скоростью. Это стремление и называется инерцией. Причем она напрямую зависит от массы объекта: согласитесь, что сдвинуть с места яблоко гораздо проще, чем многотонный валун.

Получается, что когда транспортное средство тормозит, находящихся в нем пассажиров и предметы инерция заставляет какое-то время «сохранять» свое движение вперед. А что происходит, когда машина трогается с места? Совершенно верно, инерция, действующая на все, что в ней находится, «толкает» людей и вещи — но на этот раз назад.

Именно в соответствии с законами инерции многотонные фуры на дороге опаснее, чем легковушки: их тормозной путь гораздо длиннее

№ 22

Как выпрыгну! Снова о транспорте

В фильмах мы видели, как герои выскакивают на полном ходу из движущегося вагона или автомобиля. А что скажут физики — как правильно это делать?

Прыгать вперед, по ходу движения? Но поскольку инерция и так толкает вас вперед, «прыгун» увеличит скорость и риск травмы. Тогда назад? С точки зрения физики это верно, но обезопасить себя сложнее, ведь упадете-то вы скорее всего на спину! Каскадеры часто прыгают назад относительно движения поезда и при этом располагаются спиной по направлению прыжка. Но для неопытного человека это из области фантастики. Так что специалисты рекомендуют все же прыгать вперед и вбок, стараясь сгруппироваться. А самое главное — не ставить экспериментов и совершать подобные прыжки только в случае крайней необходимости!

№ 23

Тихо! Я слушаю ультразвук!

Понятие «волна» связано не только с водой. Волны могут распространяться и в газообразной среде, и даже в твердой.

Звук тоже распространяется в виде волн! Причем важен не только источник звука (то, что его вызвало), но и то, как его воспринимают (или не воспринимают) наши органы чувств. Чем выше частота колебаний, тем выше звук. Чем ниже частота — тем, соответственно, звук ниже. Но дело в том, что человеческое ухо способно слышать лишь звуки определенного диапазона. В среднем мы способны воспринимать волны, частота которых от 16 до 16 000–20 000 колебаний (герц) в секунду. Если частота выше — большинство из нас такой звук просто не услышит. Обычно к ультразвукам относят все те, частота которых превышает 20 000 колебаний. Чтобы услышать их, потребуется специальная аппаратура.

№ 24

Частоты, рождающие панику. Инфразвук

Если ультразвук — это звук высокочастотный, то инфразвуком принято называть звуковые волны, частота которых ниже, чем может воспринимать человек. Обычно это ниже 16 герц. В природе инфразвук возникает в коре планеты при землетрясениях, во время урагана; в условиях, далеких от природных, он может генерироваться тяжелой техникой: турбинами, двигателями, шахтным оборудованием. Инфразвук очень хорошо распространяется, а у крупных объектов вызывает вибрацию.

Его коварство в том, что, будучи неслышимым человеческим ухом, инфразвук в то же время может оказать сильное негативное воздействие: вызвать приступ страха, беспокойства, сбой сердечного ритма, а в особо серьезных случаях даже повреждения внутренних органов.

В воде инфразвук распространяется на сотни километров и помогает ориентироваться китам и другим животным.

№ 25

Иерихонская труба: правда или вымысел?

Выражение «Иерихонская труба» давно стало крылатым. В Ветхом Завете есть рассказ о взятии города Иерихона: «И вострубили в трубы, народ восклицал громким голосом, и от этого обрушилась стена до основания, и войско вошло в город, и взяли город». То есть, согласно легенде, стены рухнули из-за воздействия звука невиданной силы! Но возможно ли звуками труб — пусть даже очень больших — разрушить крепостную стену? С точки зрения исследователей, такой вариант был бы возможен, если бы благодаря звуку тысяч труб возник резонанс, из-за которого и обрушились укрепления. Но это маловероятно, так как стена слишком неоднородная. Возможно, Иерихон погиб в результате землетрясения — или нужно допустить, что древним израильтянам были доступны технологии, превосходящие современные…

№ 26

Он вернулся! Бумеранг и физика

То, что бумеранг — орудие охоты австралийских аборигенов — после броска возвращается к своему владельцу, всегда вызывало восхищение у всех, кто видел этот полет. (Справедливости ради, скажем, что подобные метательные орудия существуют не только в Австралии. А большинство современных бумерангов предназначены вовсе не для охоты — это скорее игрушки.) Так чем же объясняется особенность бумеранга?

Если он попадет к вам в руки, рассмотрите его «крылья». Вы наверняка обратите внимание, что по форме они напоминают крыло самолета — плоские снизу и чуть выпуклые сверху. Помимо этого, каждая лопасть бумеранга обычно толще в передней части и становится тоньше в задней. Это не единственный вариант, существует довольно много разновидностей! Но все объединяет одно: важна не только форма, но и то, как именно бросать бумеранг.

Аборигены перед броском держат его вертикально и с силой запускают вперед. Бумеранг полетит, вращаясь, и тут вступит в действие подъемная сила. Так называется сила, перпендикулярная направлению движения тела, которая возникает из-за того, что поток (воздуха, газа, жидкости) обтекает тело несимметрично. Кроме того, включается так называемый гироскопический эффект — устойчивость при вращении в пространстве. (Еще один пример простого гироскопа — юла, или волчок.) Сочетание этих замечательных факторов — вращения, гироскопического эффекта и подъемной силы — и заставляет бумеранг, описав круг, вернуться к тому, кто его запустил.

Бумеранги применялись еще в позднем палеолите

Если бумеранг все же поразил цель, например птицу, он уже не полетит к владельцу, а упадет на землю

№ 27

Опасно! Болота и зыбучий песок

«Страшилки», связанные с таинственными болотами и песками, способными скрыть в своих глубинах животное, человека или даже автомобиль, известны каждому. Но чем объясняется это странное действие? Начнем с песка.

Конец ознакомительного фрагмента.

Оглавление

Из серии: 99 секретов науки

* * *

Приведённый ознакомительный фрагмент книги Физика без преград. Увлекательные научные факты, истории, эксперименты предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я