Солнечное вещество и другие повести, а также Жизнь и судьба Матвея Бронштейна и Лидии Чуковской (сборник)

Матвей Бронштейн, 2018

Матвей Бронштейн (1906–1938) за свою короткую жизнь успел войти в историю и фундаментальной физики, и научно-художественной литературы. Его приключенческие повести о научных открытиях и изобретениях стали образцом нового литературного жанра. Он рассказал о веществе, обнаруженном сначала на Солнце и лишь много лет спустя на Земле. О случайном открытии невидимых X-лучей, принесших Рентгену самую первую Нобелевскую премию по физике, а человечеству – прибор, позволяющий видеть насквозь. И успел рассказать об изобретении радио, без которого не было бы ни телевидения, ни интернета. В то же самое время, за тем же письменным столом, Матвей Бронштейн написал выдающиеся научные работы по квантовой гравитации и космологии, сохранившие свою ценность до сих пор. Вторую часть книги составляют свидетельства о жизненном и литературном союзе Матвея Бронштейна и Лидии Чуковской, благодаря которому родились собранные в книге повести.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Солнечное вещество и другие повести, а также Жизнь и судьба Матвея Бронштейна и Лидии Чуковской (сборник) предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

М. Бронштейн

Солнечное вещество

С чего началось

Я расскажу о веществе, которое люди нашли сначала на Солнце, а потом уже у себя на Земле.

Астрономы изучают поверхность Солнца с тех пор, как у них есть телескоп. Они видят на Солнце темные пятна, огненные облака, извержения и взрывы. Но разве можно разглядеть в телескоп химический состав Солнца, исследовать, из каких веществ оно состоит? Для этого химикам пришлось бы побывать на Солнце, захватив с собой свои пробирки, колбы, реактивы и весы.

Какая же это экспедиция пролетела полтораста миллионов километров и открыла на Солнце новое вещество?

Такой экспедиции никогда не было. Не отрываясь от своей планеты, люди ухитрились узнать, из чего состоит Солнце. Узнали это они не очень давно — всего только лет семьдесят пять тому назад[2].

И, как часто бывает в науке, для этого необычайного открытия понадобились самые скромные средства и орудия.

Эти орудия — маленькая, тусклая горелка Бунзена да еще самодельный спектроскоп, сооруженный из сигарной коробки, стеклянного клина и двух половинок распиленной подзорной трубы.

Началось все дело с горелки, а потом уже дошла очередь и до спектроскопа.

Горелка Бунзена

Горелку Бунзена вы и сейчас еще найдете в любой лаборатории. За десятки лет она нисколько не изменилась.

Простая металлическая трубка, стоящая на подставке. По резиновому шлангу в трубку течет снизу светильный газ[3], а чуть пониже середины в ней проделано отверстие для воздуха. Поднесите к верхнему концу трубки зажженную спичку, и газ загорится тусклым, бледным, почти бесцветным пламенем.

Днем этого пламени даже не заметишь. Горелка Бунзена горит гораздо тусклее самой плохонькой керосиновой коптилки, но зато пламя у нее такое жаркое, какого никогда не бывает в нашей обыкновенной печке: две тысячи триста градусов[4].

Цветные сигналы

Роберт Бунзен жил в прошлом веке[5]. Много лет был он профессором химии в маленьком немецком городке Гейдельберге.

К середине 50-х годов он уже изобрел свою горелку и теперь изо дня в день старательно изучал, как ведут себя различные вещества в пламени высокой температуры.

Он погружал в пламя то металлы, то уголь, то соли, то известь и наблюдал, что происходит со всевозможными химическими соединениями в горячем пламени светильного газа.

Осенью 1858 года он заметил и записал в лабораторном дневнике, что многие вещества ярко окрашивают бесцветное пламя.

Впервые он обратил на это внимание во время опыта с поваренной солью.

Тонкими платиновыми щипчиками взял он маленький кристаллик соли и сунул в пламя горелки. Бесцветное пламя сразу перестало быть бесцветным. Как только попала в него поваренная соль, оно разгорелось ярче и пожелтело. А комнату наполнил удушливый запах хлора.

Роберт Бунзен

Этому запаху Бунзен не удивился. Ведь поваренная соль состоит из двух веществ: хлора и натрия. Вот она и распалась на свои составные части в жарком пламени горелки, и хлор растекся по комнате.

Но почему же пламя из бесцветного сделалось желтым? Что окрасило его в желтый цвет — газ хлор или металл натрий?

Чтобы узнать это, Бунзен решил повторить опыт, но только вместо поваренной соли взять вещества, в которых будет натрий, а хлора не будет, — например соду, глауберову соль, бромистый натрий. Если пламя и при этих опытах окрасится в желтый цвет — значит, все дело в натрии.

Так и оказалось: и от соды, и от глауберовой соли пламя сразу пожелтело.

Тогда Бунзен проделал последний, решительный опыт: внес в пламя чистый натрий без всяких примесей. Пламя и на этот раз стало ярко-желтым.

Значит, догадка верна: натрий действительно окрашивает бесцветное пламя газовой горелки в желтый цвет.

Удача этих опытов навела Бунзена на мысль: быть может, не только натрий, но и другие металлы способны окрасить бесцветное пламя горелки? Что, если взять вещества, в которых натрия нет? Например, сильвин — соединение хлора с металлом калием?

Крохотный кристаллик сильвина был внесен в пламя газовой горелки. Пламя разгорелось так же ярко, как и от кристаллика поваренной соли, но окрасилось в другой цвет — не желтый, а фиолетовый.

И не один сильвин, а все вещества, в которых есть калий, дали тот же фиолетовый цвет: и селитра, и поташ, и едкое кали.

Вывод ясен: фиолетовый цвет пламени зависит от калия. Но Бунзен и тут не отказался от последней проверки: он внес в пламя чистый калий.

Все тот же фиолетовый цвет.

Значит, желтый цвет — признак натрия, а фиолетовый — калия.

Бунзен почувствовал, что опыты ведут его к какому-то важному открытию. Он стал испытывать металлы один за другим. Взял литий — и получил красное пламя, взял медь — и получил зеленое.

Опыты за опытами убеждали Бунзена в том, что он открыл новый способ химического анализа — такого анализа, для которого не нужна сложная химическая кухня, не нужны приборы, склянки, реактивы.

Теперь, когда химик захочет узнать, есть ли в каком-нибудь веществе калий, ему скажет об этом пламя газовой горелки, скажет не словами, а цветными сигналами.

Если пламя сделается фиолетовым, это значит: в веществе есть калий. А если оно сделается не фиолетовым, а желтым, это будет означать: калия нет, есть натрий.

Можно будет на глаз узнавать химический состав любого вещества. Надо только изучить язык газового пламени, разобраться в его цветных сигналах.

Неудача

Бунзен раздобыл множество разных химических соединений и принялся их исследовать. Тоненькими платиновыми щипчиками захватывал он кусочек исследуемого вещества и вносил в пламя горелки. Если же вещество было не твердым, а жидким, то вместо щипчиков брал он платиновую проволочку толщиной с конский волос, изогнутую на конце в виде петельки. Каплю жидкости, повисшую на петельке, Бунзен осторожно вносил в пламя.

Тонкая платиновая проволочка с петелькой на конце

И каждый раз в лабораторном дневнике появлялась запись о том, каким цветом окрасилось пламя.

Скоро в руках у Бунзена был длинный перечень веществ и тех цветов, по которым их можно определить. Настоящая сигнальная книга: натрий — желтый сигнал, калий — фиолетовый сигнал, медь — зеленый сигнал, стронций — красный сигнал. И так далее и так далее — на много страниц.

Сигнальная книга была готова, и вот тут-то Бунзен увидел, что пользоваться этими сигналами не так-то просто.

В перечне была, например, такая запись:

«Раствор солей натрия — желтый цвет.

Раствор солей натрия с небольшой примесью солей лития — тоже желтый цвет.

Раствор солей натрия с небольшой примесью солей калия — тоже желтый цвет».

Как же расшифровать эти сигналы? Как отличить чистый натрий от натрия с примесью калия и от натрия с примесью лития?

Бунзен зажег три газовые горелки. В пламя каждой горелки внес он по капле раствора поваренной соли. Но в одной капле поваренная соль была чистая (соединение натрия с хлором), в другой она была смешана с солями лития, в третьей — с солями калия.

Все три пламени были одного цвета: желтого. Никакой разницы между ними не было. Очевидно, натрий так сильно окрасил их в свой желтый цвет, что глазу не удалось уловить красный оттенок лития и фиолетовый оттенок калия.

Тогда Бунзен подумал: «А что, если помочь глазу — вооружить его цветными стеклами или цветными жидкостями?»

Он налил в стаканчик немного раствора синей краски индиго и стал рассматривать все три пламени сквозь синюю жидкость. И тут он сразу заметил различие в цвете.

Синяя краска индиго поглотила желтые лучи натрия, и поэтому пламя, где была поваренная соль с примесью лития, казалось теперь малиново-красным. Пламя, куда был подмешан калий, тоже казалось красным, но другого оттенка — пурпурного. А пламя, в котором была поваренная соль без всяких примесей, как будто и вовсе исчезло.

Бунзен вооружился целой коллекцией цветных стекол и стаканчиков с цветными жидкостями. Он надеялся, что эта коллекция поможет ему расшифровать все сигналы в его книге.

Но вот ему попалась на глаза такая запись:

«Соли лития — малиново-красный цвет.

Соли стронция — малиново-красный цвет».

Опять два разных вещества, а цвет один и тот же. Не помогут ли и тут цветные жидкости и стеклышки?

Долго бился Бунзен, подбирая цвета, сквозь которые можно было бы подметить разницу между пламенем лития и пламенем стронция. Но такого цветного стекла, такой цветной жидкости он не нашел.

Пламя лития никак не удавалось отличить от пламени стронция. Значит, краски и цветные стекла помогают не всегда.

А если так — пламя газовой горелки не дает надежного ключа к химическому анализу.

Казалось, Бунзен потерпел поражение.

Но тут на помощь его газовой горелке пришел спектроскоп Кирхгофа.

Простой кусок стекла

В том же университетском городке Гейдельберге жил профессор физики Густав Кирхгоф. Узнав о затруднениях Бунзена, Кирхгоф решил ему помочь. Он обещал Бунзену построить такой физический прибор, который откроет разницу в цвете пламени даже и тогда, когда отказываются служить цветные стекла и растворы красок.

План у Кирхгофа был очень простой. В его лаборатории хранилась призма из стекла «флинтглас», которую когда-то, за много лет перед тем, выточил и отшлифовал знаменитый мюнхенский оптический мастер Йозеф Фраунгофер. Призма — это простой кусок стекла, выточенный в форме клина. Но у призмы есть замечательное свойство: лучи света никогда не проходят сквозь нее прямо, а неизменно отклоняются в сторону — как будто что-то отталкивает их прочь от ребра призмы. И при этом не все лучи отклоняются одинаково: фиолетовые отклоняются сильнее всех других, красные меньше всех других, а лучи остальных цветов попадают в промежуток между красными и фиолетовыми. Поэтому если через призму пропустить пучок света, в котором смешаны лучи различных цветов, то, выйдя из призмы, эти лучи пойдут по разным дорогам.

Густав Кирхгоф

Так призма разлагает пучок света, состоящий из лучей разных цветов, разбивает его на составные части.

Йозеф Фраунгофер, который изготовил флинтгласовую призму, хранившуюся в лаборатории Кирхгофа, пользовался этим замечательным свойством призмы для того, чтобы разлагать на составные цвета солнечный луч. Через узкую щель впускал он в темную комнату пучок солнечных лучей и на пути этих лучей ставил свою призму. Лучи входили в призму узким пучком, а выходили широким веером. На противоположную белую стену ложилась разноцветная полоса света — солнечный спектр. В полосе были все семь цветов радуги: красный, за ним оранжевый, потом желтый, зеленый, голубой, синий и фиолетовый. Фраунгофер, как и многие физики до него, знал, что все эти цвета, от красного до фиолетового, все тончайшие оттенки цветов радуги, постепенно переходящие друг в друга, содержатся в белом солнечном свете, но эти отдельные цвета и оттенки заметны глазу только тогда, когда призма разлучает их между собой, разлагает в разноцветный спектр.

Путь лучей через призму.

На экране — полоска спектра: буквой Ф обозначен фиолетовый край спектра, буквой К — красный.

«Почему же, — подумал Кирхгоф, — не воспользоваться этой же самой стеклянной призмой для того, чтобы исследовать свет, испускаемый газовой горелкой? Если выделить узкий пучок такого света и пропустить его через призму — призма сразу разгадает те сигналы, которых не разгадали ни цветные стекла, ни стаканчики с красками».

Сигналы расшифрованы

Кирхгоф принес Бунзену свой прибор. Этому прибору изобретатель дал название «спектроскоп» — слово, которое он сам придумал. Теперь это слово известно всякому физику и химику, и в любой лаборатории можно увидеть спектроскоп, изготовленный на оптической фабрике. Но как не похожи эти современные удобные и точные спектральные приборы на неуклюжий спектроскоп, который Кирхгоф изготовил собственными руками! Деревянная коробка из-под сигар, стеклянная призма и старая подзорная труба с тремя выпуклыми стеклами — вот из чего был сделан первый спектроскоп.

Подзорную трубу Кирхгоф распилил пополам. Из одной трубы получилось две: первая с одним выпуклым стеклом, вторая — с двумя.

Обе трубки Кирхгоф вставил в смежные стенки сигарной коробки под углом одна к другой.

Трубку, в которой было только одно стекло, он расположил так, чтобы она глядела стеклом в коробку, а пустым отверстием наружу. Это отверстие он прикрыл картонным кружком с узкой щелью. Через щель должны были проникать в коробку лучи. Там, внутри коробки, их встречала призма, которую Кирхгоф укрепил на вращающейся оси. Пройдя сквозь призму, пучок лучей сворачивал в сторону и устремлялся в другую трубку широким разноцветным веером.

Приложив глаз к этой трубке и медленно поворачивая призму вокруг оси, можно было рассмотреть весь спектр лучей, попавших в щель спектроскопа.

В первый же день Бунзен и Кирхгоф испытали новый прибор. Бунзен зажег свою горелку, а Кирхгоф навел на пламя свой спектроскоп. Затем Бунзен стал вводить в пламя по очереди натрий, калий, медь, литий, стронций. И каждый раз, когда пламя меняло свой цвет, оба они внимательно рассматривали спектр лучей, испускаемых раскаленными парами металлов.

Спектры эти оказались не такими, как солнечный. В солнечном спектре все семь цветов радуги — от красного до фиолетового — ложатся сплошным рядом, а в спектре окрашенного газового пламени Кирхгоф и Бунзен увидели разрозненные цветные линии.

В спектре раскаленных паров калия горели две красные линии и одна фиолетовая, у паров натрия была одна линия — желтая[6], у паров меди было много линий, среди которых ярче всех горели три зеленые, две желтые и две оранжевые. И каждая цветная линия появлялась всякий раз на том самом месте, где в солнечном спектре лежит цвет точно такого же оттенка: оранжевые линии меди ложились в оранжевой части спектра, желтая линия натрия — в желтой.

Наконец-то Бунзену удалось узнать, чем отличается малиновое пламя лития от малинового пламени стронция. Когда он смотрел на них простым глазом, он не различал их, но спектр одного пламени оказался совсем непохожим на спектр другого. Достаточно было посмотреть на них в спектроскоп Кирхгофа, чтобы сразу сказать, где литий, где стронций. Спектр лития состоит из одной яркой красной линии и одной оранжевой послабее, а спектр стронция — из одной голубой и нескольких красных, оранжевых, желтых линий.

Один за другим цветные сигналы были расшифрованы. Задача была решена.

Пепел, гранит и молоко

Кирхгоф и Бунзен нашли ключ к разгадке химического состава любого пламени, любого светящегося газа. Не нужно химического анализа, чтобы узнать, есть ли в пламени натрий. Если вы увидите его желтую линию в том месте спектра, где ей полагается быть, вы сразу обнаружите натрий. Если в спектре у вас две красные и одна фиолетовая линии, вы можете быть уверены, что в пламени есть калий. А если в спектре окажется красная линия, зелено-голубая и синяя, то, значит, в пламени есть водород.

Поставьте на пути лучей спектроскоп — и линии спектра безошибочно расскажут вам о химическом составе тела, испускающего лучи.

Такой способ угадывать химический состав по линиям спектра был назван спектральным анализом.

Бунзен стал исследовать множество разных веществ. Все, что попадалось ему под руку, он тащил к спектроскопу. Он вносил в пламя горелки и каплю морской воды, и каплю молока, и пепел сигары, и кусочки всевозможных минералов. В спектре пепла гаванской сигары он увидел желтую линию натрия и красные линии лития и калия; в спектре кусочка мела он увидел линии натрия, лития, калия, кальция, стронция. Множество разных веществ исследовал таким образом Бунзен, раскаляя их в жарком пламени горелки и наблюдая спектр раскаленных паров.

Новый способ распознавать химический состав оказался необычайно чувствительным и точным. Бунзен находил спектральные линии редкого металла лития в тех веществах, в которых лития так мало, что никаким другим способом его обнаружить невозможно. Литий был найден спектроскопом и в морской воде, и в золе водорослей, прибитых Гольфстримом к берегам Шотландии, и в ключевой воде, которую Бунзен взял из источника, бьющего из гранитной скалы в окрестностях Гейдельберга, и в кусках гранита, отколотого от той же скалы, и в листьях винограда, выросшего на скале, и в молоке коровы, которая ела эти листья, и в крови людей, которые пили это молоко.

Но газовая горелка и спектроскоп помогли химику Бунзену сделать еще более важное открытие: с их помощью он обнаружил два новых металла, о существовании которых никто и не подозревал. В спектре саксонского минерала лепидолита и в спектре рассола, полученного при выпаривании дюркхеймской минеральной воды, он увидел спектральные линии, которые не совпадали с линиями знакомых химикам веществ. Бунзен понял, что и в лепидолите, и в дюркхеймской минеральной воде скрыты какие-то еще неизвестные вещества.

И в самом деле, вскоре Бунзену удалось извлечь из минерала лепидолита новый металл, который он назвал рубидием, а из дюркхеймской воды другой новый металл, которому он дал имя «цезий»[7].

Открытие рубидия и цезия было первой большой победой спектрального анализа.

Звезды в лаборатории

Шел год за годом. Физики и химики изучали все новые и новые спектры: спектры раскаленных паров разных солей, спектры раскаленных и расплавленных металлов, спектры разреженных газов, которые светятся, когда по ним проходит электрический ток, спектр электрической искры, спектр лучей, испускаемых раскаленной известью и прошедших сквозь окрашенные стекла, сквозь цветные жидкости, газы и пары.

Спектроскоп, когда-то построенный Кирхгофом из сигарной коробки, стеклянного клина и двух половинок подзорной трубы, стал родоначальником многих других спектроскопов, более удобных для работы и более точных.

Сам Кирхгоф много потрудился над тем, чтобы усовершенствовать свое изобретение. Вскоре спектроскопы стали изготовляться на оптических фабриках. В каждой лаборатории появился спектроскоп. Немецкие оптические фирмы сконструировали дорогие и сложно устроенные спектральные приборы для точных измерений. Лондонская фирма «Браунинг» выпустила в продажу дешевые карманные спектроскопы.

Усовершенствованный спектроскоп с четырьмя призмами

Переходя из призмы в призму, веер лучей разворачивается все шире и шире.

Спектроскоп пригодился и физикам, и химикам, и инженерам. Пригодился он даже сыщикам. Увидев на полу или на одежде подозрительное темное пятно, похожее на засохшую кровь, сыщик смывает пятно спиртом. А по спектру лучей, прошедших через спирт, в лаборатории могут сразу сказать, растворена ли в нем кровь[8].

Но гораздо больше, чем сыщикам, пригодился спектроскоп людям, которые изучают самые далекие светящиеся тела — планеты и звезды.

До изобретения спектроскопа никто и мечтать не смел о том, что когда-нибудь нам станет известно, из чего состоят звезды, планеты и Солнце.

Никто не знал, входят ли в состав небесных светил те же самые вещества, которые мы встречаем и у себя на Земле, или же небесные светила состоят из каких-то особенных, небесных веществ.

Только открытие Кирхгофа и Бунзена помогло людям затащить звезды в лабораторию, создать новую науку — небесную химию, химию небесных светил.

Астрономы всего мира с жадностью ухватились за спектральный анализ и стали применять его в самых разнообразных исследованиях. Здесь не хватит места рассказать обо всех тех удивительных вещах, которые были открыты с помощью спектрального анализа.

Только об одном открытии я расскажу здесь — о том открытии, с которого начинается необычайная история вещества, найденного на Солнце.

Спектроскоп исследует Солнце

Во время полного солнечного затмения, когда все Солнце закрыто от нас Луной, из-за черного диска Луны внезапно вырываются красные язычки пламени. Язычки кажутся нам маленькими, а на самом деле они во много раз длиннее диаметра нашей Земли.

Это извержения и взрывы на огненной поверхности Солнца.

Такие взрывы бывают на Солнце каждый день и по многу раз в день. Но простым глазом их можно наблюдать только во время полного солнечного затмения, когда лучезарный диск закрыт Луной и потому не ослепляет нас.

Странно, что ученые обратили внимание на эти огненные взрывы, выступающие из-за края Луны, всего только лет семьдесят пять тому назад[9], хотя полные затмения Солнца бывают чуть ли не каждый год — то в одной, то в другой части земного шара — и каждый раз можно заметить солнечные выступы. Астрономы попросту их проглядели. Затмение длится всего несколько минут, а то и секунд, и за эти секунды надо столько записать, зарисовать, измерить! Все внимание астронома-наблюдателя поглощено лихорадочной работой, и часто волнение мешает ему видеть вещи, которые он не рассчитывал увидеть.

А может быть, астрономы и замечали эти взрывы, но считали их просто обманом зрения.

Как бы то ни было, 18 июля 1860 года, когда полное солнечное затмение наблюдалось в Испании, астрономы, съехавшиеся туда со всех концов Европы, наконец-то обратили внимание на солнечные выступы и даже успели их зарисовать. Тогда только ученые всего мира заговорили о солнечных выступах и стали наперебой высказывать различные догадки об их природе и происхождении[10].

Через восемь лет после испанского затмения, 18 августа 1868 года, ожидали полного солнечного затмения в Индии.

Жюль Жансен

Французский астроном Жансен, который всю свою жизнь занимался исследованием Солнца, решил воспользоваться этим затмением, чтобы изучить спектр солнечных выступов. Взяв с собой спектроскоп, он отправился в далекое морское путешествие. Он поспел вовремя. В тот момент, когда затмение наступило и красные языки вырвались из-за черного лунного диска, Жансен навел на них трубу своего спектроскопа. Он увидел цветные линии — спектр тех раскаленных газов и паров, которые извергает Солнце.

Линии были такие яркие, что у Жансена невольно возникла мысль: а нельзя ли увидеть их и без затмения, при полном блеске Солнца?

На другой день, когда солнце как ни в чем не бывало выкатилось из-за горизонта и поднялось над пальмами и пагодами, Жансен навел щель спектроскопа на самый край Солнца. Он сделал это так осторожно и так искусно, что в щель спектроскопа попадали только лучи солнечных выступов, а лучи самого солнечного диска проходили мимо.

Глядя в спектроскоп, Жансен убедился, что его вчерашняя догадка правильна. В спектроскопе были те самые цветные линии, которые он видел накануне, — линии спектра солнечных выступов.

Норман Локьер

А если так, Жансен мог решить свою задачу и без затмения. К чему же было ездить в Индию?

И правда, ни к чему: английский астроном Локьер, сидя у себя в Англии и ничего не зная о Жансене, сделал то же открытие, что и он.

Парижская академия получила в один день два письма: одно от Жансена, другое от Локьера, — и в обоих письмах говорилось об одном и том же открытии.

Письмо Локьера было написано 20 октября 1868 года, а письмо Жансена раньше — 19 августа того же года. Но из городка на восточном берегу Индии, где находился Жансен, письмо шло в Европу больше двух месяцев. Вот почему оба письма пришли в Париж в один и тот же день и были зачитаны в заседании Парижской академии 26 октября 1868 года одно через несколько минут после другого.

Это странное совпадение так поразило академиков, что они решили выбить золотую медаль в честь открытия спектра солнечных выступов. На одной стороне медали были портреты Жансена и Локьера, а на другой — бог Солнца Аполлон в колеснице, запряженной четверкой коней, и под колесницей надпись: ANALYSE DES PROTUBERANCES SOLAIRES 18 AOUT 1868 («анализ солнечных выступов 18 августа 1868 года»).

Солнечное вещество

Что же обнаружили Жансен и Локьер в спектре солнечных выступов?

Прежде всего им обоим бросились в глаза яркие линии водорода: красная, зелено-голубая и синяя.

Но, кроме этих трех линий, в спектре оказалась еще одна линия — желтая. Что значит эта линия, ни Жансен, ни Локьер никак не могли понять. Она расположена довольно близко от того места спектра, где должна была бы лежать желтая линия натрия. Близко, но не совсем в том месте — значит, это не натрий.

Откуда же эта линия? Ни одно из веществ, известных химикам того времени, не имело ее в своем спектре.

Жансен и Локьер долго размышляли и наконец пришли к выводу, что неизвестная линия, которую они назвали линией D3, принадлежит какому-то особому небесному веществу. Очевидно, на Земле его нет, оно существует только на Солнце, за полтораста миллионов километров от нас.

И поэтому Локьер решил назвать новое, найденное на Солнце вещество именем самого Солнца — «гелий».

«Гелиос» — по-гречески это и значит «Солнце».

Вещество было названо, но о свойствах его пока еще не было известно ровно ничего.

Астрономы высказывали только догадку, что гелий, вероятно, очень легкий газ. Ведь когда на солнечной поверхности происходят извержения, то восходящий поток газов захватывает и уносит на огромную высоту только самые легкие вещества.

Вес блохи

История гелия началась на небе, а через двадцать пять лет неожиданно спустилась на землю.

В 1893 году английский физик Джон Уильям Рэлей предпринял точное измерение веса различных газов. В первую очередь стал он взвешивать те газы, с которыми наука раньше всего и больше всего имела дело: водород, кислород и азот.

Для чего понадобилась эта работа? Разве водород, кислород и азот не были взвешены и до Рэлея? Да, вес этих газов был давно известен, но Рэлей захотел взвесить их точнее, чем взвешивали их прежде. В конце прошлого[11] века физики уже не довольствовались грубыми приборами старинных лабораторий. Им потребовались точные цифры, точные знания о свойствах вещей. Новыми, более тонкими и чуткими приборами физики стали заново измерять плотности тел, температуры плавления и кипения, оптические, химические и электрические свойства.

Джон Уильям Рэлей

Джон Уильям Рэлей вооружился самыми точными весами, какие только были у него в лаборатории, и принялся за работу.

Прежде всего он решил заново взвесить водород. Он взял большой стеклянный шар и тщательно измерил, сколько литров газа может в нем поместиться. Потом воздушным насосом выкачал из шара воздух и взвесил шар. Потом наполнил водородом и снова взвесил. Точные весы показали, что шар, наполненный водородом, на столько-то граммов и столько-то миллиграммов тяжелее, чем пустой.

Оставалось только разделить граммы на литры.

Так Рэлей измерил точный вес литра водорода[12].

Покончив с водородом, он точно так же взвесил и кислород.

Потом дошла очередь и до азота.

Рэлей взял несколько литров воздуха и очистил его от кислорода. Остался азот, и этим азотом Рэлей наполнил свой стеклянный шар. Взвесив шар на точных весах, он узнал, сколько весит литр азота.

Но это было еще не все. Осторожный физик привык проверять каждый свой опыт различными способами.

Рэлей снова добыл азот, на этот раз не из воздуха, а из другого газа — аммиака. Снова наполнил он азотом стеклянный шар, снова взвесил на точных весах. И тут обнаружилась странная вещь: литр азота, добытый из аммиака, оказался на шесть миллиграммов легче, чем литр азота, добытый из воздуха. На целых шесть миллиграммов!

Шесть миллиграммов — вес небольшой. Это вес блохи.

Но один литр азота не должен быть легче другого литра азота даже и на сотую часть блошиного веса!

Рэлей снова взвесил азот воздуха и азот аммиака, и его точные весы снова показали ту же разницу — шесть миллиграммов.

Литр «воздушного» азота весил 1,2565 грамма.

Литр «аммиачного» азота — 1,2507 грамма.

«Что за странность? — подумал Рэлей. — И то и другое — азот, но у “воздушного” азота один вес, у “аммиачного” — другой? А что, если для сравнения добыть азот не из воздуха и не из аммиака, а из какого-нибудь другого вещества?»

Рэлей собрал целую коллекцию веществ, содержащих азот: окись азота, закись азота, азотистокислый аммоний, селитру, мочевину. Из всех этих веществ он извлекал азот и взвешивал на точных весах. И что же? Оказалось, что у азота, добытого из закиси, и у азота, добытого из окиси, и у азота из азотистокислого аммония, и у азота из селитры вес совершенно одинаковый: 1,2507 грамма на литр — точь-в-точь такой, как у азота, добытого из аммиака.

Так почему же у азота, добытого из воздуха, вес больше? Почему «воздушный» азот — исключение? Уж не было ли какой ошибки в опыте с «воздушным» азотом?

Рэлей решил взвесить «воздушный» азот еще раз.

Он снова взял несколько литров воздуха и тщательно очистил их от кислорода. Оставшимся азотом он наполнил стеклянный шар и взвесил — теперь уже в третий раз.

Упрямые весы продолжали показывать одно и то же. Литр «воздушного» азота весил не 1,2507, а 1,2565 грамма.

Разница ничтожная. Начинается она всего только с тысячных долей, с третьей цифры после запятой.

Но один литр азота ни в коем случае не должен весить больше другого литра азота даже и на тысячную долю!

Значит, тут кроется какая-то тайна.

Неизвестная примесь

Рэлей написал письмо о своих опытах в лондонский научный журнал Nature (по-русски это значит «Природа»).

Редакция журнала напечатала письмо Рэлея.

«Азот, — писал Рэлей, — весит совершенно одинаково, откуда бы его ни добыть — из азотистокислого аммония, из аммиака, из мочевины, из селитры. Одно только есть исключение: азот, добытый из воздуха. Азот воздуха тяжелее, чем азот аммиака, мочевины, селитры. Значит, азот воздуха — это какой-то особенный азот. Не сумеет ли кто-нибудь из химиков объяснить аномалию (ненормальность) “воздушного” азота?»

Журнал Nature — очень известный журнал. Не только в Англии, но и на всем земном шаре нет такого физика или химика, который не читал бы журнала Nature.

Физики и химики всего мира прочитали письмо Рэлея, но тщетно ждал он ответа. Никто не отозвался на его письмо, никто не сумел объяснить аномалию «воздушного» азота.

Тогда Рэлей обратился за советом к своему приятелю, лондонскому профессору химии Уильяму Рамзаю. Он подробно рассказал Рамзаю о своих опытах и предложил ему вместе заняться расследованием вопроса о том, почему литр «воздушного» азота на целых шесть миллиграммов расходится в весе с литром всякого другого азота.

Уильям Рамзай

Рэлей и Рамзай долго спорили о причинах непонятного расхождения в шесть миллиграммов. Наконец Рамзаю пришла в голову догадка: а что, если азот, добытый из воздуха, — не чистый азот? Надо бы узнать, нет ли в нем какой-нибудь неожиданной примеси какого-нибудь тяжелого газа, который и дает эти лишние шесть миллиграммов.

Что же это за газ?

Рамзай еще ничего не знал о нем. Одно только было несомненно: этот газ должен быть тяжелее азота. Если бы он был легче, то и азот, к которому подмешан какой-то процент этого газа, был бы легче, а не тяжелее стопроцентного азота. Ведь стакан чистого песка легче стакана, наполненного смесью песка и свинцовой дроби.

Но если к азоту воздуха подмешан какой-то тяжелый газ, то как могло случиться, что химики его не заметили?

Химики делали много опытов с воздухом, почему же они до сих пор не обнаружили, что в воздухе, если его очистить от пыли, водяных паров и углекислоты, есть, кроме кислорода и азота, еще какой-то третий газ?

Рэлей и Рамзай стали рыться в книгах и журналах. Они перечитывали описания всех опытов с воздухом, когда-либо проделанных учеными. Но нигде не отыскали они ни единого слова, которое могло бы подтвердить их догадку о существовании третьего газа.

И только в одной старинной книге, где описывались опыты с «мефитическим газом» (так химики XVIII столетия называли азот), Рэлей и Рамзай наткнулись на одно место, которое заставило их насторожиться.

Забытый опыт

В конце XVIII века жил в Лондоне ученый-химик, которого звали Генри Кавендиш. Это был нелюдимый и одинокий человек. Он появлялся на улицах с узловатой палкой, в длинном дедовском сюртуке и в широкополой шляпе. О его странностях и причудах по городу ходило множество слухов. Передавали, будто нелюдимость его и суровость доходят до того, что иной раз за целый день он не произносит ни одного слова. Говорили еще, что он очень богат и все свое огромное состояние тратит на всякие опыты и на покупку научных машин и приборов. Об опытах своих и открытиях он никому не рассказывает: опытами и открытиями он занят для собственного удовольствия, и мнение других людей нисколько его не интересует[13]. Еще говорили, что Кавендиш устроил у себя в доме библиотеку научных книг и открыл в нее доступ всем, кто пожелает ею пользоваться. Каждый посетитель может унести к себе домой любую книгу, оставив хозяину расписку. Шутники утверждали, будто сам Кавендиш так строго и точно соблюдает установленные им в библиотеке порядки, что всякий раз, когда ему случается взять книгу из собственного книжного шкафа, он выдает себе расписку: «Такого-то числа такую-то книгу взял у Генри Кавендиша Генри Кавендиш».

Генри Кавендиш

Чудак Кавендиш давно умер. Давно забыты его широкополая шляпа, его сюртук, его причуды. Но физики и химики помнят, что Генри Кавендиш первый открыл, из чего состоит вода, и первый вычислил, сколько весит земной шар.

А в 1785 году, изучая свойства «мефитического газа» — азота, — он проделал опыт, который через сто девять лет научил Рэлея и Рамзая, как разгадать тайну «воздушного» азота.

Генри Кавендиш взял стеклянную трубку, изогнутую в виде латинской буквы U. Наполнив трубку смесью азота с кислородом, он вставил ее в рюмки с ртутью — одним концом в одну рюмку, другим в другую. А потом стал через смесь азота и кислорода гнать электрические искры.

Рюмки с ртутью

В наше время есть много усовершенствованных машин для добывания электрических искр: индукционная катушка Румкорфа, высоковольтные трансформаторы, генераторы высокого напряжения. Но во времена Генри Кавендиша всех этих машин еще не было. Ученые знали только один способ добывать электрическую искру — трение. Кавендиш получал электрические искры трением стекла о кожу. В машине, которая была у него в лаборатории, большое стеклянное колесо, вращаясь, терлось о кожаные подушки. Стекло и кожа заряжались электричеством, и это электричество Кавендиш отводил по проволокам в рюмки с ртутью — электричество стекла в одну рюмку, электричество кожи в другую. Когда электричества в рюмках скапливалось достаточно, электрические искры начинали скакать из одной рюмки в другую по изогнутой трубке, наполненной смесью азота с кислородом.

Кавендишу это и было нужно. Он знал, что под действием электрических искр кислород вступает в химическое соединение с азотом.

И в самом деле, как только посыпались искры, стеклянная трубка наполнилась оранжево-красным дымом. Оранжево-красный дым — это окислы азота, соединение азота с кислородом. Кавендиш набрал в пипетку раствор едкого натра и впустил несколько капель этой жидкости внутрь изогнутой трубки. Оранжевый дым сейчас же исчез. Он без остатка растворился в едком натре.

Электрическая машина Кавендиша

Но Генри Кавендиш решил гнать искры через трубку до тех пор, пока весь кислород и весь азот, запертые в ней, не превратятся в окислы азота. Это была трудная задача. Искры получались у Кавендиша слабенькие, да и следовали они одна за другой не сразу, а через большие промежутки — не то что в теперешних машинах, где искры сыплются непрерывным потоком. Целых три недели, днем и ночью, сменяя друг друга, Кавендиш и его слуга вращали стеклянное колесо электрической машины. Азот и кислород в трубке медленно соединялись друг с другом, превращаясь в оранжевый дым. Едкий натр уничтожал этот дым, впитывал его в себя. Все меньше и меньше азота с кислородом оставалось в трубке. А освободившееся место заполняла ртуть. И с каждым днем в обоих коленах трубки уровень ртути делался все выше и выше.

Наконец, через три недели, работа была окончена. Ртуть заполнила оба колена трубки. Значит, весь азот, который был в трубке, соединился с кислородом и вместе с ним растворился в едком натре.

Но, приглядевшись внимательнее, Кавендиш увидел над ртутью и едким натром крохотный пузырек газа. Кавендиш еще раз пропустил электрическую искру. Но пузырек не исчезал.

Генри Кавендиш, по своему обыкновению, точно записал все подробности опыта. Не забыл он упомянуть и о крошечном пузырьке.

«Пузырек, — писал Кавендиш, — это был остаток азота, который почему-то не удалось соединить с кислородом».

«Обрати внимание»

Рамзай не в первый раз читал об этом опыте. Когда он еще не был профессором химии, а был всего только молодым студентом, он перелистывал однажды биографию Кавендиша. В книге были приведены отрывки из лабораторного журнала, в который Кавендиш день за днем вносил все подробности своих опытов. Упоминание о крохотном пузырьке, не пожелавшем соединяться с кислородом, удивило Рамзая. И на полях книги, как раз против строчек о таинственном пузырьке, Рамзай написал карандашом: look into this («обрати внимание»).

Впоследствии Рамзай позабыл о пузырьке — у него нашлись задачи поинтереснее, чем проверка опытов, проделанных старым чудаком сто лет тому назад. Но теперь, когда он вместе с Рэлеем задумал объяснить аномалию «воздушного» азота, он сразу разгадал тайну пузырька. Ведь азот-то для своих опытов Кавендиш добывал не из аммиака, не из селитры, а из воздуха! И при этом азот, который он добыл из воздуха, не весь соединился с кислородом, сколько ни бился над ним старый Кавендиш. В изогнутой трубке, так писал сам Кавендиш, от всего азота остался лишь маленький пузырек, но пузырек этот был особенный, непохожий на обыкновенный азот: никакие искры не могли заставить его соединиться с кислородом.

И вот у Рамзая мелькнула мысль: а что, если этот пузырек был вовсе не азот, а какой-то другой, не замеченный химиками газ, подмешанный к «воздушному» азоту? Верно, этот неизвестный газ и есть та самая примесь, которая делает каждый литр «воздушного» азота на целых шесть миллиграммов тяжелее, чем литр азота из аммиака или селитры.

Но как узнать, верно это или нет? Как проверить эту догадку?

А вот как: если такой газ в самом деле существует, нужно во что бы то ни стало разлучить его с азотом.

Примесь найдена

Физик Рэлей и химик Рамзай заперлись в своих лабораториях и стали порознь решать задачу: как извлечь из «воздушного» азота спрятанную в нем примесь? Они условились не выходить из лабораторий до тех пор, пока неизвестная примесь не будет выделена. А для того чтобы каждый знал, как идут дела у другого, они ежедневно обменивались через посыльного письмами и протоколами опытов.

Рэлей решил попросту повторить опыт Кавендиша, но в гораздо больших размерах. Ему-то это было легко, ведь в его время физики располагали такими электрическими приборами, о которых Кавендиш, за сто лет перед тем, не смел и мечтать. Если к азоту и в самом деле подмешан какой-то неизвестный газ, не соединяющийся с кислородом, то теперь возможно добыть не крошечный пузырек этого газа, как сделал Кавендиш, а по крайней мере несколько кубических сантиметров. И тогда будет нетрудно изучить этот газ, узнать его химические свойства, взвесить его на точных весах.

Рэлей взял стеклянный баллон и впаял в него две проволоки. Внутри баллона между концами проволок оставалось расстояние в несколько сантиметров. Наружные концы проволок торчали из баллона. Рэлей соединил их с высоковольтным трансформатором.

Когда будет включено электрическое напряжение, внутри баллона с кончика одной проволоки на кончик другой, через маленький промежуток в несколько сантиметров, поскачут электрические искры.

Прибор Рэлея

Рэлей накачал в баллон несколько литров азота и кислорода, а потом стал вгонять туда насосом раствор едкого натра. Едкий натр фонтаном врывался в баллон и вытекал из него по особой стеклянной трубочке. В то же время Рэлей включил электрическое напряжение.

Посыпались искры, и под действием этих искр азот стал вступать в химическое соединение с кислородом. Рэлею только этого и надо было: он знал, что, едва лишь азот соединится с кислородом, его можно будет выгнать из баллона с помощью едкого натра. Едкий натр (об этом писал и Кавендиш) поглощает соединение азота с кислородом.

И в самом деле: через несколько часов весь азот, который был в баллоне, соединился с кислородом и ушел прочь из баллона вместе со струей едкого натра.

Азот ушел из баллона, но баллон не совсем опустел. На это указывал манометр — прибор, которым измеряют давление газа на стенки сосуда. Значит, в баллоне остался какой-то газ — очевидно, тот самый подмешанный к азоту газ, который так упорно искали Рэлей и Рамзай.

Этот газ не соединяется с кислородом, не растворяется в едком натре. Потому-то он и остался в баллоне.

Рэлей тщательно просушил и профильтровал новый газ, продувая его через фарфоровую трубку с горячими медными опилками. Горячие медные опилки очистили газ и от того ничтожного количества кислорода, которое все еще в нем оставалось.

Так Рэлей решил свою задачу — выделил неизвестный газ, подмешанный к азоту.

А как решил ту же задачу Рамзай?

Он поступил иначе. В его химической лаборатории не было высоковольтного трансформатора, какой был в лаборатории физика Рэлея. Но Рамзай был опытным химиком. Ему и без трансформатора удалось разлучить азот с неизвестным газом.

Он достал трубочку из тугоплавкого стекла, насыпал в нее кусочки магния и засунул ее в электрическую печку. Когда печка нагрелась, кусочки магния раскалились докрасна.

Тогда Рамзай взял насос и стал гонять взад и вперед по этой трубочке азот, добытый из воздуха.

Раскаленный магний — это ловушка для азота: магний впитывает его в себя. Десять дней подряд гонял Рамзай по трубочке несколько литров азота. Наконец весь азот был поглощен раскаленным магнием.

Но в трубочке остался газ, который ни за что не соглашался соединиться с магнием.

Рэлей и Рамзай шли разными путями, но пришли к одной и той же цели. Неизвестный газ был пойман, выделен, очищен и заперт в стеклянный баллон.

Ленивый газ

Оба ученых сейчас же принялись изучать новооткрытый газ. Наконец-то им удалось взвесить его на весах в чистом виде и узнать, правильна ли догадка Рамзая, что новый газ тяжелее, чем азот.

Да, тяжелее. Почти в полтора раза.

Так было объяснено расхождение в весе между «воздушным» и «аммиачным» азотом.

После этого Рэлей и Рамзай стали проделывать с новым газом всевозможные химические опыты. Они уже знали, что он не соединяется ни с кислородом, ни с магнием, ведь потому-то им и удалось извлечь его из азота.

Но с какими же веществами он соединяется?

Множество разных веществ испытали Рэлей и Рамзай. Они попробовали соединить новый газ с водородом, с хлором, с фтором, с металлами, с углем, с серой. Но все было напрасно: газ упорно отказывался вступать в химическое соединение. Не помогло ни сильное нагревание, ни сжатие, ни электрические искры, ни прикосновение губчатой платины — словом, ни один из многочисленных способов, которые применяют химики, чтобы заставлять вещества соединяться друг с другом. В конце концов Рэлей и Рамзай вынуждены были прийти к заключению, что нет на свете такого вещества, с которым мог бы соединиться открытый ими газ.

Конец ознакомительного фрагмента.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Солнечное вещество и другие повести, а также Жизнь и судьба Матвея Бронштейна и Лидии Чуковской (сборник) предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Примечания

2

В 1868 году (повесть эта впервые вышла книгой в 1936 году). — Здесь и далее, если не указано иное, прим. сост.

3

Светильный газ — горючий газ, получаемый из угля или нефти, который сначала использовался только для освещения (отсюда и название).

4

В 1930-е годы для освещения нередко использовались керосиновые лампы (маленькие называли «коптилками»), а для отопления и приготовления пищи — печки, которые топились дровами или углем.

5

Годы жизни немецкого химика-экспериментатора Роберта Бунзена: 1811–1899.

6

Внимательно изучив эту желтую линию, физики обнаружили, что на самом деле она двойная: она состоит из двух очень близко расположенных друг к другу желтых линий. Эти линии получили у физиков особое название: их называют линиями D1 и D2. — Прим. автора

7

Сами названия новым элементам даны по цветам наиболее ярких линий в их спектрах: rubidus по-латыни означает «темно-красный», caesius — «голубой».

8

Каждое вещество по-своему поглощает лучи разного цвета, и спектр поглощения столь же точно характеризует вещество, как и спектр излучения.

9

В 1860 году.

10

Астрономы назвали солнечные выступы протуберанцами (от латинского слова protubero — «вздуваюсь»).

11

Теперь уже позапрошлого.

12

Когда физики говорят о том, сколько весит литр какого-нибудь газа, подразумевается, что газ берется при температуре ноль градусов и при нормальном давлении семьсот шестьдесят миллиметров ртутного столба. — Прим. автора

13

В этих рассказах есть доля правды. Многие открытия Кавендиша остались при его жизни неопубликованными. И только через несколько десятилетий после его смерти английский физик Максвелл разыскал его рукописи и напечатал их. В рукописях, изданных Максвеллом, действительно оказалось описание нескольких важных открытий, о которых Кавендиш никому не рассказывал. Из этих открытий самое важное — открытие закона отталкивания и притяжения электрических зарядов. Кавендиш открыл этот закон, но не счел нужным опубликовать его. А через несколько лет, еще при жизни Кавендиша, то же самое открытие сделал французский физик Кулон. Кавендиш даже и тогда не заявил о своем первенстве. Закон взаимодействия электрических зарядов физики с тех пор называют законом Кулона, хотя мы и знаем, что опыты Кавендиша были сделаны раньше, чем опыты Кулона, и были гораздо точнее.

Рэлей и Рамзай знали о работах Кавендиша по книге, опубликованной Максвеллом. — Прим. автора

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я