Вселенная! Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности (Дэйв Голдберг, 2010)

Эта книга – идеальный путеводитель по самым важным и, конечно, самым увлекательным вопросам современной физики: «Возможны ли путешествия во времени?», «Существуют ли параллельные вселенные?», «Если вселенная расширяется, то куда она расширяется?», «Что будет, если, разогнавшись до скорости света, посмотреть на себя в зеркало?», «Зачем нужны коллайдеры частиц, и почему они должны работать постоянно? Разве в них не повторяют без конца одни и те же эксперименты?» Юмор, парадоксальность, увлекательность и доступность изложения ставят эту книгу на одну полку с бестселлерами Я. Перельмана, С. Хокинга, Б. Брайсона и Б. Грина. Настоящий подарок для всех, кого интересует современная наука, – от любознательного старшеклассника до его любимого учителя, от студента-филолога до доктора физико-математических наук.

Оглавление

Из серии: Золотой фонд науки

* * *

Приведённый ознакомительный фрагмент книги Вселенная! Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности (Дэйв Голдберг, 2010) предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Глава 2

Квантовые странности

Так живой он или мертвый – шредингеровский кот?

Если вы хоть в чем-то похожи на нас, то ваше презрение к авторитетам сравнимо разве что с вашим же вкусом к жизни. Вы не подчиняетесь ничьим приказам и уж, конечно, ничего не принимаете на веру. Мы так хорошо вас понимаем – ведь мы тоже бунтари-одиночки. Вот почему мы не отвечаем на ваши вопросы об устройстве Вселенной сакраментальным «потому что мы так сказали». Напротив, мы из кожи вон лезем, взывая к вашему здравому смыслу и повседневному опыту, чтобы они подтолкнули вас в нужном направлении.

С квантовой механикой это не получается. На здравом смысле тут далеко не уедешь, хотя вам, возможно, и покажется, будто вы летите с ветерком. Вас, словно Гензеля и Гретель, привлекут яркие цвета и простые ответы, которые вы получите, если изберете легкий путь. Считайте наши подсказки хлебными крошками, которые готовы повести вас по тайным лабиринтам квантовых странностей. Опустим ту часть, согласно которой нас склевали прожорливые птички.

«А что такого странного в квантовой механике?» – спрашиваете вы с беспечной улыбочкой. Да, мы понимаем, вы стреляный воробей, в жизни у вас уже было буквально все, и вас уже ничем не обескуражить. А значит, вы не будете возражать, если мы попросим вас пройти один незамысловатый популярный тест[19].

Старинный тестъ на классическую интуицiю

Пожалуйста, постарайтесь отвечать честно. Если вы человек настолько искушенный, что ввязались в эту историю, уже зная кое-что о квантовой механике, нечестно притворяться, будто ваша интуиция щелкает парадоксы, как орешки.

Вопросы:

1. Сочувствуете ли вы метаниям Роберта Фроста в стихотворении «Другая дорога»?

В осеннем лесу, на развилке дорог,

Стоял я, задумавшись, у поворота;

Пути было два, и мир был широк,

Однако я раздвоиться не мог,

И надо было решаться на что-то.

(Пер. Г. Кружкова)

2. Подумайте над дилеммой Гамлета: «Быть или не быть?». Так ли уж необходимо делать подобный выбор?

3. Если дерево падает в лесу, где никого нет, производит ли оно грохот?


Ответы:

Если вы ответили «да» на все три вопроса, поздравляем! По складу ума вы прекрасно приспособлены к жизни в классическом мире. Если же вы ответили «нет» хотя бы на один из них, то не прошли тест на классическую интуицию, зато, скорее всего, готовы вступить в квантовый мир.

Если вы прошли тест на классическую интуицию, то оказались в отличной компании. Сэр Исаак Ньютон (и его классические последователи) помог нам выстроить поезда, автомобили, даже космические корабли, – и все это основываясь на сильной классической интуиции. И если судьба не распорядилась так, что именно вы конструируете микросхемы, можно ручаться, что практически все ваши повседневные действия соответствуют классической физике.

Но многое в природе скрыто от непосвященных, и, если приглядеться, окажется, что физическим миром на самом деле правит микроскопическое царство квантовой механики. Слово «квантовый» относится к следующему явлению: энергия электронов и прочих частиц не может иметь произвольное значение. Вот, например, лампочки бывают мощностью только 40, 60 и 100 ватт, а не, скажем, 93 ватта, – так и энергии микромира способны (ну, или должны) принимать только «квантованные» значения. Другая сторона понятия «квантовый» заключается в том, что иногда мы будем говорить о том, что все пространство заполнено чем-нибудь вроде, скажем, электрического поля. Но если взглянуть на ситуацию внимательнее, мы обнаружим, что поле можно разбить на отдельные частицы.

А при чем тут «механика»? Так, заполнить пустое место.

Чтобы проиллюстрировать наши слова примерами, мы проведем некоторое время с двумя личностями, которые воплощают суть квантовых странностей: с доктором Джекилом и мистером Хайдом. Доктор Джекил – человек добрый, мягкосердечный и очаровательно предсказуемый, мистер Хайд – сущий дьявол и заслуживает презрения, с каким относятся разве что к серийным убийцам и любителям караоке.

Разумеется, вы должны знать, что доктор Джекил и мистер Хайд взаимоисключающи. Мистер Хайд – это мерзкое уродливое существо, которое живет внутри доктора Джекила и выскакивает на поверхность, чтобы сеять смерть и разрушение[20]. Неважно, почему это происходит – по воле случая, под настроение, в некий роковой предназначенный час, – так или иначе, Джекил превращается из благовоспитанного доктора в разъяренного социопата мгновенно.

Так вот, присоединимся к доктору Джекилу, который гуляет по свежевыпавшему снегу. Наслаждаясь морозным декабрьским воздухом, Джекил подходит к белому штакетному забору, где не хватает одной дощечки. Доктор Джекил не чужд невинным забавам и любит простые радости, поэтому он отходит на несколько футов и начинает бросать снежки. Многие снежки попадают в забор (ведь доктор Джекил прежде всего ученый, и меткость никогда не была его сильным местом), но некоторым все-таки удается пролететь в щель в заборе и разбиться о домик, который стоит в отдалении. Как нетрудно догадаться, при этом получается простой узор. На стене дома образуется неряшливая, однако четко различимая вертикальная линия.

Доктору Джекилу становится скучно бросать снежки в такую простую мишень, и он бродит по окрестностям, пока не находит забор, где не хватает двух штакетин, так что в нем две щели. Тогда доктор снова начинает бросать снежки один за другим и – бух! шлеп! – одни пролетают в левую щель, другие – в правую, третьи попадают в забор. Глядя в щели на стены дома, доктор видит две четкие линии из снега и льда. Можно с большой долей уверенности сказать, что комья снега слева прилетели из левой щели и наоборот.



Эксперимент с двойной щелью доктора Джекила основан на схеме, предложенной английским физиком Томасом Юнгом, и в данном случае ясно иллюстрирует поведение частиц. Делаем в заборе одну щель – получаем одну снежную линию, вводим вторую щель – получаем вторую линию. Тот же эксперимент можно проделать с камнями или тортиками и получить совершенно такой же результат. Главное – результаты экспериментов доктора Джекила очевидны, предсказуемы и прекрасно соответствуют здравому смыслу и интуиции. Если какой-нибудь бобби[21] увидит, что доктор Джекил бросается снежками в частный дом, и бросится в погоню, то в ее начале мы будем точно знать, где находится каждый из них. Подобным же образом, если доктор Джекил свернет в переулок, мы будем точно знать, где он находится. Поскольку мы можем измерить длину городских кварталов и засечь, сколько времени бежит доктор Джекил, мы сумеем также вычислить, с какой скоростью он бежит.

Вот что значит поведение, подобающее джентльмену – и частице.

И что? Ничего сенсационного мы не рассказали. Но что будет, если мы снимем розовые очки классической механики и посмотрим на ситуацию без них? Мы обнаружим эквивалент доктора Джекила, который и сворачивает в проулок, и бежит дальше по улице – и бросает снежок сразу в две щели в заборе.

I. Из чего состоит свет – из крошечных частиц или из большой волны?

Теперь мы опять будем убеждать вас в вашей способности понимать классический мир и лишь затем углубимся в мир микроскопический, где правит квантовая механика. Прежде всего рассмотрим луч света. Если вы посветите фонариком в зеркало, что вы увидите? Разумеется, луч света, только это не объясняет, как свет добрался от фонарика к вашим глазам.

Ньютон в XVII веке заявил, что свет, судя по всему, состоит из отдельных частиц света, так называемых фотонов. При помощи призм он разложил белый свет на разные цвета, которые назвал основными компонентами света. Кроме того, он предположил, что частицы света отлично помогают легко и просто объяснить интересные оптические явления.

Примерно в это же время голландский физик Кристиан Гюйгенс пришел к прямо противоположному выводу. Он показал, что если мы представим себе, что свет исходит из одной точки, примерно как круги по воде, если бросить в пруд камушек, то сможем объяснить все световые явления. Он утверждал, что свет ведет себя как волна.

Чтобы вы сполна прочувствовали, насколько это заковыристая дихотомия, надо объяснить, что такое волна.

Наверняка вы уже видели волны – в море или, скажем, в собственной ванне. Водяные волны в ванне, звуковые волны в воздухе и световые волны обладают общими параметрами – амплитудой, скоростью, длиной волны.



Размах между самой высокой и самой низкой точкой волны (амплитуда) показывает, насколько волны сильные. Чтобы вы слушали любимую группу по коротковолновому радио, звук нужно преобразовать в серию волн и направить из радиопередатчика. Амплитуда радиоволн контролирует силу сигнала, а следовательно, то, насколько чистой будет мелодия, которую вы услышите.

Кроме того, у волн есть скорость распространения. Радиосигналы – всего лишь разновидность световой волны, а свет всегда движется со скоростью 299 792 458 метров в секунду. Это не только потому, что диджеи понимают, насколько вы страдаете без привычной классики рока[22]. Когда радиоволна достигает вашей антенны, она преобразуется в звуковую волну (которая создается движением мембран в динамиках), а звуковая волна бьет вас в лицо со скоростью примерно 340 метров в секунду. Это означает, что за редкими исключениями радиосигналу требуется меньше времени, чтобы добраться от передатчика радиостанции до вашего радиоприемника, чем звуковой волне – чтобы добраться от динамика до вашего уха.

Наконец, есть еще длина волны – расстояние между соседними максимумом и минимумом, а заодно и характеристика цвета и энергии волны. Видимый свет имеет длину волны немного меньше одной тысячной доли миллиметра. Волны с более низкой энергией, например радиоволны, имеют длину больше сантиметра. Волны с более высокой энергией, например рентгеновские лучи, имеют длину волны 10–10–11–8 метра, а у гамма-лучей энергия еще выше. Их лучше избегать, поскольку, дай им волю, они сразу же наградят всех, до кого дотянутся, сверхъестественными способностями[23].

Кажется, что эти две картинки – волна и частица – очень разные. С другой стороны, оказывается, обе предсказывают в точности одно и то же. Например, мы знаем, что если посветить на зеркало, то свет отразится от зеркала и будет воспринят глазом.

Отражение очень легко объясняется представлением о частицах. Если вы хоть немного похожи на нас, то распространенная игра «погонять мяч с ребятами» сводится для вас к бросанию теннисного мячика в дверь гаража. Вялая подача, громкий «бум» и неловкий отскок – и мячик снова у вас в руке. Если вы сосредоточитесь очень сильно, то, вероятно, вспомните, как вам объясняли про мячик: «Угол падения равен углу отражения». А может быть, и нет. Может быть, если вы сосредоточитесь очень сильно, вы услышите главную тему из «Индианы Джонса». Тогда поверьте нам на слово. Вы знаете все об отражении фотонов. Если вы замените теннисный мячик фотоном, а гаражную дверь – зеркалом, то прекрасно опишете свет.

Разумеется, волна отражается точно так же. Представьте себе устройство скрипки или концертного зала. Акустика как таковая определяется тем, что происходит со звуковой волной, когда она отражается от стен комнаты или другого пустого пространства. Причем в точности как в случае с частицей отражение света подчиняется волшебному соотношению – «угол падения равен углу отражения».

Представляется, что все эти споры о частицах и волнах не более чем софистика: ведь обе гипотезы объясняют отражение совершенно одинаково. Но не беспокойтесь – волны и частицы объясняют одинаково отнюдь не все явления.

Для нас (и для Гюйгенса) волна интересна и полезна тем, что две волны способны интерферировать друг с другом. Бросьте в спокойный пруд пару камешков – и вы поймете, что мы имеем в виду.

Физические феномены можно объяснять как угодно, но они не отвечают на важный вопрос: из чего состоит свет – из электромагнитных волн или из частиц? Этот спор тянулся сотни лет, до самого ХХ века, когда было объявлено, что победила дружба, – примерно как в конкурсе самодеятельности в детском саду. Чтобы понять, как это происходит, вернемся к нашему герою – мистеру Джекилу.

После утомительного дня, посвященного бросанию снежков и невинным шуткам со стражами правопорядка, доктор Джекил возвращается домой, где у него устроена лаборатория, чтобы предаться новым экспериментам. Поскольку там у него в распоряжении имеются более цивилизованные научные аппараты, он может провести опыт Юнга с двойной щелью как положено. То есть вместо заборов и снежков он берет экран с тонкой вертикальной щелью и светом из лазерного источника. За передним экраном стоит задний проекционный экран, на котором мы видим световые узоры. Ну, как вы думаете, что увидит доктор Джекил?

Тут и думать нечего. Он увидит на дальнем экране яркую вертикальную линию.



С другой стороны, если он прорежет в переднем экране две щели, картина несколько усложнится.

Тут доктор Джекил обнаруживает, что в нем пробудился зверь – мистер Хайд. Свет проходит сквозь обе щели, и волна из одной интерферирует с волной от другой, отчего на проекционном экране появляется сложный узор.

Вот как выглядел сверху аппарат с двумя щелями, согласно оригинальным заметкам Юнга.



Свет проходит сквозь щели А и В, достигает противоположного экрана и создает яркие пятна в точках С, D, Е и F (а также в точках выше и ниже, где Юнг обрывает схему). Знакомая картина? Как будто вы бросили камешки в пруд в точках А и В? Просто это более точная версия того, как выглядят интерферирующие между собой волны.

Даже если вы ничего не вынесете из этой дискуссии, вы должны знать, что множество ярких линий – верный признак того, что мы имеем дело с интерференцией. Чтобы интерферировать друг с другом, лучи света должны проходить и через правую, и через левую щели одновременно, а иначе у нас не получится сложного рисунка, который мы видим на противоположном экране.

В отличие от отражения, получить интерференцию от частиц никак не получается. Если взять в каждую руку по бильярдному шару и столкнуть их, то не получится мест, где шары интерферируют. Складываются и интерферируют только волны.

Итак, вот вам простое практическое руководство:

♦ две яркие линии = как частицы (Джекил);

♦ много ярких линий = как волны (Хайд).

II. Можно ли изменить реальность, если просто смотреть на нее?

Свет, безусловно, волна. Эксперимент Юнга с двойной щелью доказывает это окончательно и бесповоротно. Ну что, вопрос закрыт?

Размечтались. Ньютон был абсолютно убежден, что свет состоит из частиц, и он был не одинок. В 1905 году Альберт Эйнштейн показал, что свет на самом деле состоит из фотонов. Такие громкие заявления нуждаются в веских доказательствах, какие бы знаменитости и знатоки их ни делали, поэтому Эйнштейн обосновал свою точку зрения с помощью так называемого фотоэффекта.

Ученые заметили, что если посветить на металлы ультрафиолетовым лучом, выскакивают электроны. С другой стороны, если подставлять те же самые металлы под менее энергичные длины волн, ничего не происходит. Эйнштейн сделал вывод, что единственное возможное объяснение фотоэффекта – фундаментальное: свет состоит из отдельных частичек, фотонов, каждая из которых передает свою энергию одному-единственному электрону. Это как стучать одним бильярдным шаром по другому, а значит, куда больше похоже на частицы, чем на волны, верно? Поскольку красный, зеленый или синий свет (сделанный из отдельных фотончиков) такой слабенький, ни у одного фотона не хватает энергии, чтобы вышибить электрон, – именно поэтому наблюдаемый эффект замечен только в ультрафиолетовом свете, при более высоких энергиях.

Эйнштейн получил за это открытие Нобелевскую премию, практически каждая вводная книга по этой теме воздает ему должное как человеку, доказавшему, что свет ведет себя как поток частиц, однако, как выяснилось, вердикт не был окончательным. В 1969 году несколько исследовательских групп показали, что фотоэффект можно объяснить и на основе волновой гипотезы. Эйнштейн прекрасно объяснил фотоэффект, но оказалось, что его объяснение не единственное. Просто он рассказал нам прелестную историю со счастливым концом. Хотя в его доказательстве было несколько логических погрешностей, оказалось, что он все равно был прав. Множество экспериментов впоследствии показали, что свет определенно ведет себя как поток частиц.

Представляется, что все эти споры стоят в одном ряду с вопросами, ответы на которые примерно так же судьбоносны: «Сколько ангелов уместится на кончике иглы?» и «Куда, куда вы удалились, весны моей златые дни?» И правда, кому интересно, что такое свет на самом деле – волны или частицы? К тому же, если вдуматься, не такое уж это и противоречие. Вот, например, океанские воды уж точно ведут себя как волны, но мы-то знаем, что на самом деле они состоят из отдельных (вроде частиц) молекул.

Может быть, и свет ведет себя так же? Может быть, он только кажется непрерывной волной – примерно как кажется непрерывной картинка на экране телевизора? Если внимательно присмотреться к телевизору, видно, что изображение «на самом деле» состоит из отдельных пикселей.

Может быть, свет только кажется волной, потому что в нем так много фотонов? В контексте опыта с двойной щелью, может быть, ужасно много фотонов проходит в левую щель, ужасно много фотонов – в правую, а потом две волны интерферируют друг с другом.

Ах, если бы жизнь была так проста.

Мы уже говорили о том, что физическая интуиция в квантовой механике не помощница. Надеемся, вы не выбросили надувные нарукавники, потому что сейчас мы бросим вас на глубину.

Множество фотонов проходят в каждую щель и интерферируют друг с другом, причем ведут себя как волны. Мистер Хайд, который хочет вернуться в состояние доктора Джекила, кое-что задумал. «Может быть, – свирепо рычит он, – если снизить интенсивность луча, фотоны будут пролезать в щели по одному. А отдельный фотон уж точно не сможет вести себя как волна, ему ведь не с чем интерферировать!»

Бедный, легковерный простак! Посмотрим, что получается, когда он претворяет в жизнь свой завиральный проект.

Как и планировалось, он приглушает луч и удостоверяется в том, что фотоны попадают в аппарат строго по одному. Как и раньше, на заднем экране есть детектор, который засекает каждый попадающий в экран фотон. Хотя результаты должны накопиться, а происходит это не сразу, Хайд все равно видит, какой рисунок они образуют на дальнем экране.

Хайд видит на дальнем экране рисунок из нескольких полос, который показывает, что фотонный луч и в самом деле ведет себя как волна. Попадающие в аппарат фотоны с чем-то интерферируют. Но ведь луч настроен так, что выпускает фотоны по одному. Единственное логическое объяснение – что фотоны интерферируют сами с собой. Каждый фотон проходит сквозь обе щели одновременно. Фрост ошибался. Если ты фотон, то тебе по силам пройти по обеим дорогам, а не только по той, которая покажется нехоженой.

Мы знаем, что фотон умеет вести себя и как волна, и как частица. Понимание, что фотон способен проявлять оба качества, не объясняет, откуда он знает, когда проявлять какое. В 1978 году Джон Арчибальд Уилер из Принстонского университета предложил интересный опыт, который позволил увидеть, как фотоны поведут себя в опыте с двойной щелью, если мы изменим правила игры на полдороге. «Представим себе, – подумал Уиллер, – что задний экран можно убрать, а за ним на некотором расстоянии стоят два телескопчика, каждый из которых точно нацелен на одну из двух щелей».

Если убрать экран, то, глядя в тот или иной телескопчик, мы точно скажем, в какую щель проскочил тот или иной фотон. А значит, каждому фотону придется проскакивать в определенную щель, а не в обе. Иначе говоря, можно заставить фотоны вести себя как частицы, если убрать экран, – а значит, превратить экспериментатора обратно из Хайда в Джекила. Если мы поставим экран на место, то фотоны начнут снова вести себя как волны – и снова воцарится мерзопакостный Хайд.



Тот факт, что мы повлияем на поведение фотонов, добавляя или убирая экран, сам по себе странноватый, но дальнейшее предположение Уилера делает его еще более странным. Что будет, если убрать экран после того, как отдельный фотон пройдет первый экран – тот, что со щелями? «Опыт с отложенным выбором» позволит нам превращать свет из волны в частицу и обратно в любой момент эксперимента.

Иначе говоря, уже после того, как фотон пролетел сквозь экран со щелями, мы можем сделать так, чтобы он пролетел только сквозь одну щель[24] – и для этого нужно всего-навсего убрать проекционный экран. Хуже того – своими действиями мы сделаем так, что фотон каким-то образом выберет, через какую щель проскакивать. Есть что-то замогильно-жуткое в том, чтобы иметь возможность так глубоко повлиять на реальность, особенно если осознать, что, как представляется, фотон тогда делает выбор ретроспективно.

Квантовая механика (и Уилер) утверждает, что в принципе не существует никакого способа предсказать, через какую щель пройдет фотон, до того, как мы заставим его вести себя согласно классической физике (убрав экран). Да, мы действительно способны изменить квантовый мир уже после того, как произошло некое событие. Из чего можно вывести два потрясающих следствия:

1) наблюдение над системой фундаментально ее меняет;

2) отдельные фотоны способны вести себя и как частица, и как волна и в мгновение ока переключаться из одного состояния в другое.

III. Что же такое, в самом деле, электроны, если их как следует рассмотреть?

Все странности квантовой механики были бы невинными шалостями, если бы относились только к свету. Свет – особая статья: у него вообще нет массы, и к тому же он постоянно движется со скоростью с. Как вы, наверное, догадались, беда в том, что фокусы квантовой механики распространяются не только на фотоны.

Самые легкие частицы, с которыми мы можем без труда иметь дело, – это электроны. Если вы не слишком много о них знаете, это ничего, мы как следует перемоем им косточки в главе 4. Сейчас вам надо знать только одно – что с электронами мы имеем дело постоянно. Традиционные (не плазменные) телевизоры делаются на основе «электронно-лучевых трубок», а это всего-навсего интеллигентное название для баллистических электронных пушек, которые пуляются вам в лицо электронами на околосветовой скорости.

Что будет, если мы в ходе опыта с двумя щелями будем стрелять электронами, а экран поставим флуоресцентный? Каждый раз, когда электрон попадает во флуоресцентный экран, мы видим вспышку света, так что можем сосчитать, сколько электронов попадает в каждую конкретную часть экрана. Если бы Хайд мог наложить свои корявые злодейские руки на электронный луч и если бы он настроил источник так, чтобы посылать только один электрон за раз, он все равно получил бы на экране рисунок, характерный для волн, а не для частиц. То же поведение, которое мы наблюдали у фотонов!

Провести этот опыт в реальности было невозможно по техническим причинам до самого недавнего времени, хотя физическое сообщество ничуть не сомневалось, к каким результатам он приведет. В 1989 году Акира Тономура из Университета Гакусюин и его сотрудники провели опыт с двумя щелями для электронов, и вас ничуть не удивит, когда вы узнаете, что электронный луч дает абсолютно тот же результат, характерный для волн, – множество линий на экране – что и световой луч. По крайней мере мы надеемся, что вас это ничуть не удивит.



По данным Тономуры и др., 1989


На тот случай, если вам нужно получить подзатыльник от Хайда, чтобы лучше дошло, повторим: тот факт, что электрон способен интерферировать сам с собой, доказывает, что на самом деле он проходит одновременно в обе щели. Однако рассечь электрон напополам нельзя даже самой острой катаной. Ну, как вам парадокс? Электрон проходит в обе щели, даже не разделяясь надвое.

Конечно, это справедливо не только для фотонов и электронов. В последнее время этот опыт провели с самыми разными микроскопическими объектами, например с нейтронами и атомами. И все они вели себя совершенно так же – по-квантовому странно.

Мы признаем, что навязчиво рекламируем вам опыт с двумя щелями, но, уверяем вас, без этого никак. Темы вроде относительности позволяют ученому-физику принять факты наподобие скорости света, а затем построить теорию для объяснения, в общем-то, всего остального, не покидая уютной кладовки в доме своих родителей. Квантовая механика, напротив, практически целиком построена на опытах, опытах и еще раз опытах, причем зачастую оказывается, что прежние теории не в силах объяснить происходящее.

Обратная сторона опыта Тономуры – та же, что и в опыте Уилера с отложенным выбором. Если мы каким-то образом будем следить за электронами, чтобы посмотреть, в какую именно щель они пролетают, то произойдет коллапс волновой функции, и мы заставим электроны вести себя, как подобает частицам.

«Коллапс волновой функции» – фраза, которой физики бросаются направо и налево, для них это все равно что сказать «вычислить собственные значения гамильтониана» или «посидеть дома одному в субботу вечером». Мы так к ней привыкли, что забываем, что требуются дополнительные объяснения[25]. А вот о волновой функции имеет смысл кое-что добавить.

В квантовой модели волной является все. Если внимательно посмотреть на электроны, окажется, что они вовсе не похожи на шарики – скорее на облачка. Там, где облако (или, если вы цените постоянство терминологии, «волновая функция») плотнее всего, мы имеем самую высокую вероятность обнаружить электрон в данный момент времени.

Когда мы говорим, что электрон «ведет себя как волна», или когда вы слышите разговоры об электронном облаке, это не значит, что электрон как таковой – это такой бесформенный предмет вроде сахарной ваты. Также мы не хотим, чтобы вы считали волновую функцию электрона чем-то вроде тасманийского дьявола из старых мультиков – помните, он бегал так быстро, что казался размазанным пятном?

Электрон и в самом деле находится сразу в нескольких местах, и если мы вычислим его точное местоположение, то изменим природу системы. Нет никакого способа заранее узнать, где именно находится электрон, и изолировать его возможно только посредством наблюдения. Как только мы выявляем местоположение электрона, например, попадаем в него фотоном, происходит коллапс волновой функции, и в следующий миг мы почти наверняка знаем, где находится электрон. Волновая функция уже не распространяется на большую область пространства.

Представьте себе, что Джекил и Хайд сидят и играют в «Морской бой»[26]. Как мы знаем, Хайд прожженный жулик, поэтому некоторое время, когда доктор Джекил называет координаты, Хайд постоянно утверждает, что он промахнулся, а сам передвигает свои корабли. В конце концов Хайд понимает, что обманывать противника бесконечно ему не удастся, поэтому он вынужден поставить свои корабли в определенные места на доске и признаться, что удар попал в цель. Очевидно, то, что Джекил определил местоположение судна, повлияло на ситуацию.

Иными словами, вспомните свою юность. Когда вы были молоды, весь мир лежал у ваших ног. Перед вами раскрывались бесчисленные возможности: кем быть? Физиком-ядерщиком? Космологом? Астрономом? А теперь подумайте о том, чего вы достигли. Все потенциалы, все неопределенности схлопнулись в одно состояние, в то, как вы на самом деле распорядились своей жизнью, – в одну дорогу.

IV. Не квантовая ли механика виновата в том, что я постоянно все теряю?

Объяснив, в чем состоит основная идея квантовых странностей, мы посвятим несколько минут беседе о некоторых ее следствиях, которые на первый взгляд кажутся невероятными, – именно их вы скорее всего сочтете софистическими фокусами или чрезмерным упрощением.

Когда мы направляем луч электронов на экран с двумя щелями в ходе все того же опыта, то не знаем, в какую именно щель пролетит частица. Это все равно что сказать, что в положении электрона наблюдается неопределенность. В 1948 году Ричард Фейнман, который тогда работал в Корнельском университете, обнаружил в этом опыте еще более вопиющую странность.

Чтобы хорошенько представить себе, что именно сделал Фейнман, давайте снова поставим этот опыт. Хайд стреляет электронным лучом в экран с двумя щелями и смотрит, что получится. «А если бы мы прорезали в переднем экране третью щель?» – думает он. Будучи прирожденным убийцей, Хайд выхватывает кинжал и прорезает в экране еще одну щель. Теперь электрону придется проходить сквозь все три щели – в каждую с некоторой вероятностью, – и интерферировать друг с другом будут все три получившиеся в результате волны.

«А четвертую? А пятую?» И снова электрон будет проходить во все щели одновременно. «А если мы будем прорезать щели, пока экран не исчезнет?» Хайд принимается кромсать экран, словно он весь состоит из лондонских уличных мальчишек, пока пол лаборатории не оказывается усеян обрывками и ошметками. Электрон должен проходить сквозь все пространство, где раньше был экран, с некоторой вероятностью.



Что произойдет, если Хайд поставит между лучом и задним проекционным экраном много таких (пустых) экранов? Естественно, электрон пройдет сквозь все эти щели с вероятностью, заданной волновой функцией.

Но если никаких экранов нет, значит, Фейнман описывает ситуацию, в которой обычная частица просто проходит из точки А в точку В, а если вы еще не поняли, в чем тут соль (а понять это не так-то просто), на самом деле он убедительно показал, что, проходя из одной точки в другую, частицы двигаются вовсе не обязательно по прямой или даже по кривой или зигзагообразно, а проходят все возможные пути одновременно!

Хуже того – проходя по всем этим возможным путям, частицы вытворяют самые разные невозможные фокусы. Например, они обретают «неправильную» массу или двигаются быстрее скорости света. То, что в обычной жизни кажется невозможным, происходит просто с крайне маленькой вероятностью. Но тем не менее «невозможные» события нужно учитывать в расчетах, чтобы они были точными.

Мы отдаем себе отчет, что все это до боли похоже на «философские» рассуждения под воздействием расширителей сознания, которые так любят вести студенты за полночь: «Эй, ребята, а вот было бы клево, если бы мы были, ну… в общем, везде сразу?» – «У-у-ух ты-ы-ы!»

Но надо понимать, что фейнмановские «все возможные пути», как и опыт с двумя щелями, – это полезная картина действительности, поскольку она дает верные ответы. Поскольку мы не в состоянии засечь частицы между передним и задним экраном, мы не можем с уверенностью утверждать, где они там находятся. А если бы мы могли определить их местоположение, то разрушили бы систему.

Сама идея, что невозможно в точности сказать, где находится частица, ничего не испортив, вероятно, вас огорчает. Мы с вами согласны. Однако этот мысленный эксперимент позволяет представить себе природу движущихся частиц – даже если от этого впору вывихнуть мозги.

А следовательно, если вы куда-то засунули ключи от машины, не думайте, будто квантовая механика вам поможет. Квантовая механика имеет дело лишь с вероятностью обнаружения частицы в той или иной точке, но это не означает, что она пренебрегает деталями. Напротив, она очень-очень точно отражает, насколько мало мы знаем о Вселенной.

В 1927 году Вернер Гейзенберг, который тогда работал в Гёттингене, постулировал, что для любой частицы не только нельзя однозначно определить местонахождение и параметры движения, более того, чем лучше мы знаем местонахождение, тем хуже можем измерить скорость – и наоборот[27]. В результате, если мы знаем местоположение частицы с бесконечной точностью, у нас нет ни малейшего представления о том, какова ее скорость. Подобным же образом, если мы (как-то) умудрились определить, с какой скоростью частица движется, мы бы не имели ни малейшего представления, где она находится.

«Принцип неопределенности Гейзенберга» – одна из тех концепций квантовой механики, которые особенно часто понимают неправильно, в основном потому, что люди склонны предполагать, будто на самом деле это не более чем классический феномен. Многие популярные книги по квантовой механике ошибочно «доказывают» принцип неопределенности следующей цепочкой рассуждений. Если мы хотим понять, где находится частица, надо стукнуть ее фотоном. Если фотон имеет очень большую длину волны, мы не можем точно определить положение частицы. Фотоны с большой длиной волны ударяют слабо, поэтому измерение не слишком влияет на электрон, а значит, мы можем определить его скорость достаточно точно.

С другой стороны, чтобы как следует понять, где находится частица, нужно ударить ее фотоном с маленькой длиной волны. Фотон с маленькой длиной волны очень энергичный, а значит, сильно ударяет частицу. В результате мы не можем определить ее скорость достаточно точно.

Из этого следует, что именно фотон и делает неопределенными местонахождение и скорость частицы. Ведь без фотона, ударяющего частицу, которую мы наблюдаем, мы бы ничего не испортили. Но ведь дело совсем не в этом. Хотя наши наблюдения (то, что мы вводим в картину фотон) влияют на состояние частицы, неопределенность его положения и скорости – это фундаментально. Обойти ее невозможно в принципе.

У принципа неопределенности есть несколько удивительных следствий. Давайте сначала представим себе, как доктор Джекил в своей лаборатории перекладывает блокноты на полке. Если он уходит выпить чаю и возвращается, чтобы снова просмотреть блокноты, они будут лежать в точности на том же самом месте, где он их оставил, ведь они большие, увесистые и едва ли способны передвигаться сами по себе.

Но что если на сцену выходит мистер Хайд? Поскольку жестокость его безгранична, он не обращает никакого внимания на блокноты, а вместо этого хватает беззащитный электрон и запихивает его в очень маленькую коробочку[28]. Если знать, что электрон в коробочке, значит, неопределенность его положения очень невелика. А следовательно, довольно высока неопределенность его скорости. Что мы имеем в виду под неопределенностью? Мы имеем в виду, что никто не знает и не может узнать, какова скорость электрона. Однако Хайд точно знает, что электрон не сидит неподвижно. Если бы это было так, он мог бы с определенностью заявить, что его скорость равна нулю. Значит, электрон наверняка мечется в коробочке.

Вероятно, электрон быстро бежит налево, и так же вероятно, что он быстро бежит направо. Чем меньше коробочка, тем лучше мистер Хайд знает, где находится электрон, и тем хуже он знает, какова его скорость, а следовательно, тем быстрее электрон может метаться.

Но этим дело не ограничивается. Неопределенность распространяется не только на электроны. Как мы уже видели, свет тоже состоит из волн, а как мы увидим в следующей главе, свет – это всего одно из четырех (или, вероятно, пяти) фундаментальных полей, пронизывающих Вселенную. Что будет, если Хайд возьмет «пустую» коробочку, в которой совершенно точно не будет ни света, ни электронов?

Мы уже упоминали, что Хайд совершенно безумен, и оказывается, что его эксперимент в принципе невозможен. Как бы Хайд ни старался, свету все равно удается найти лазейку в коробочку. Чтобы это понять, сначала надо осознать, что даже если Хайд не пускает свет в коробочку, в нее, в принципе, могут попасть отдельные световые волны. Амплитуда этих волн, как и электрона, неопределенна, но Хайд пытается свести ее к нулю. Это – основа «теории квантового поля», союза специальной теории относительности (глава 1) и квантовой механики.

Если заключить электрон в маленькую коробочку, он от этого начнет скакать со все большей средней энергией, – точно так же неопределенность гарантирует, что нет никакого способа полностью удалить электрическое поле.

Это означает, что даже в предположительно пустой коробочке Хайда то и дело возникают и исчезают фотоны. Это сущее безумие – но ведь и он, увы, безумен. Это означает, что даже в пустом пространстве есть энергия. Она называется «энергия вакуума» Вселенной и обладает крайне странными свойствами. Например, если Хайд сомнет свою коробочку в гармошку, то, хотя ее объем уменьшится, плотность энергии вакуума не возрастет. Это совсем не похоже на… в общем, на все остальное на свете.

Именно в этот момент, как правило, нефизик и обвиняет нас в «подтасовке фактов». В конце концов, если Вселенная полна энергии вакуума, почему мы ее не замечаем? Ведь, похоже, ее там целая прорва.

Наверное, вам станет понятнее, что происходит, если мы приведем аналогию с тем, как вы помогаете другу[29] с переездом. Представьте себе, что ваш друг живет на шестом этаже без лифта. В целом вы любите помогать людям, но теперь вам нужно тащить на шестой этаж всякие разные трюмо – на собственном горбу и по узким извилистым лестницам. К вечеру вы волей-неволей заметите, что влезть на шестой этаж – та еще работенка. Но почему вам не приходит в голову, что ваш друг живет на высоте 700 метров над уровнем моря? В самом деле, почему? Потому что это не играет никакой роли. Так вот, энергия вакуума – это как первый этаж. Это самая низкая энергия, какую только можно измерить, а все остальное отсчитывается от нее. Примерно поэтому же вы никогда не говорите, что какая-нибудь энергия «ниже энергии вакуума».

Все это, однако, не доказывает, что мы не «подтасовываем факты». Мы только показали, почему мы никогда не замечаем энергии вакуума, но при этом не привели никаких веских доказательств того, что она вообще существует. Это подождет – до тех пор, пока мы не начнем разговор о природе пространства. Пока что будем считать энергию вакуума следствием квантовой механики и неизбежным злом вроде Хайда.

Разумеется, поскольку вакуум обладает готовым запасом энергии, это означает, что по закону E = mc Вселенная способна непрерывно порождать частицы. Частица может выскочить в вакуум, словно пар из кипящей кастрюли, с одним условием – она не должна существовать слишком долго. Частицы могут возникать, но они быстро аннигилируют, и чем массивнее частица, тем меньше она живет и тем скорее исчезает навсегда.

V. Можно ли взять и построить телепортатор, как в «Звездном пути»?

Мы не привыкли думать о таких вещах, как электроны, как о «волновых функциях», однако они и есть волновые функции. Это означает, что в большей или меньшей степени (скорее в меньшей) пространство, где можно с некоторой вероятностью обнаружить электрон, огромно – строго говоря, это вся Вселенная. То, что мы привыкли считать «невозможным», следует переопределить как просто «крайне невероятное».

Представьте себе, что лондонцы устроили ловушку – вырыли в земле огромную яму, – а Хайд в нее угодил. Мистер Хайд попытался было выпрыгнуть, но даже его крепкие ноги не сумели вызволить его из ямы. На физическом жаргоне мы можем сказать, что у него не хватает энергии, чтобы выпрыгнуть. И что бы вы думали? Квантовая механика диктует, что, поскольку местоположение великого преступника неопределенно, существует вероятность, что мистер Хайд будет «наблюдаться» вне ямы. Это просто такой способ сказать, что он выбрался. Мастер побега, он выкручивается из положения, из которого, как кажется обычному человеку, выбраться невозможно. Он устраивает побег, построив туннель, но не в классическом смысле – в земле, чайной ложкой; он просто оказывается вне ямы.

Поясним нашу мысль. Хайд не в силах контролировать свой побег, то есть возникновение туннеля: это просто случайное событие, которое происходит с некоторой вероятностью. Более того, если мы имеем дело с настолько крупным предметом, как наш маниакальный друг, нам придется очень долго ждать, когда же что-нибудь случится, – не исключено, много дольше, чем существует Вселенная.

С другой стороны, для микроскопических объектов вроде атомов туннелирование не просто возможно, а почти неизбежно. Уран, плутоний и торий могут сидеть себе смирно, и всем составляющим их частицам и в голову не придет покидать ядро. Представьте себе, что уран «сделан» из ядра тория плюс ядро гелия. Они связаны настолько прочно, что (человеку с классическим мышлением) кажется невозможным, чтобы гелий (более легкий элемент) взял да и сбежал. Но дайте только срок! Невероятно, но факт – существует вполне осязаемый шанс, что через какие-нибудь 4,5 миллиарда лет гелий туннелирует и сбежит.

Квантовая механика не просто дает нам возможность совершить самый невероятный побег, но и позволяет за те же деньги испытать телепортацию! Поскольку волновая функция электрона, урана, да что там – даже такого мерзавца, как мистер Хайд, – строго говоря, простирается на всю Вселенную, существует ненулевая вероятность[30], что вас или еще что-нибудь внезапно «пронаблюдают» на другой планете, которая вращается вокруг другой звезды.

Мы понимаем, что вы хотели другого. Вы хотели получить «настоящее» телепортационное устройство вроде тех, которые видели в «Звездном пути»[31]. Вам нужно что-то такое, чтобы вы имели возможность контролировать, куда и когда посылаете свой отряд, а не полагаться на чистую случайность. Ну что ж, вам повезло. Квантовая механика позволяет выстроить устройство для телепортации – как положено, чин чином, – но прежде чем вы разобьете свинью-копилку, чтобы его купить, позвольте предупредить вас о некоторых его особенностях.

Во-первых, настоящий телепортатор не перемещает ваши атомы из пункта А в пункт В. На самом деле он создает точную копию. Представьте себе, что вы хотите переместить статую на другой конец комнаты – раз уж вам не хочется проводить эксперименты на людях. Тогда у приемника должно быть в распоряжении достаточно атомов углерода, достаточно атомов железа, достаточно атомов кальция и так далее – и все наготове. Передатчику надо будет отправить сигнал, который дает приемнику точные инструкции, описывающие волновую функцию каждого атома и общее устройство статуи. Если в пункте назначения удастся точно скопировать волновые функции, значит, у нас получится самая настоящая телепортация.

Кажется, что здесь что-то не так: ведь мы только скопировали статую, а не переместили ее. Позвольте задать вам один вопрос. А какая разница? Скопированная статуя будет выглядеть точно так же, вплоть до мельчайших деталей. И весить будет столько же, и на ощупь такая же, и эксперты признают ее подлинной, и так далее.

С точки зрения законов физики, статуя будет точно такая же. Вселенная ведь не отличает один атом, например, кальция от другого. Все они идентичны. Более того, процесс отправления сигнала приемнику разрушает волновые функции оригинала. Иначе говоря, телепортационное устройство – это вам не факс: вы начинаете с одного предмета и получаете тоже один предмет, только в другом месте.

Итак, с телепортацией статуй покончено. Что будет, если мы телепортируем человека – например, лично вас? Телепортированная версия «вас» не почувствует никакой разницы. Что есть «вы», как не сумма волновых функций квадрильонов составляющих вас атомов? Эти атомы определяют не только ваш внешний облик, но и ваши воспоминания. А поскольку оригинал, с которого вас скопировали, разрушен, других «вас» на свете нет, и оспаривать ваши воспоминания некому.

Так прекрасно (или ужасно), что даже не верится? Не обольщайтесь, поскольку сначала надо кое-что прояснить. Всю эту главу мы говорили о волновой функции отдельных атомов. На самом деле, если два атома взаимодействуют друг с другом, более уместно рассматривать комбинированную волновую функцию двух атомов. В таких случаях говорят о «запутанности квантовых состояний» этих атомов, а это всего-навсего ученый термин, обозначающий, что если мы знаем что-то на квантовом уровне об одном атоме, то знаем и о другом.

Базовая процедура такова:

1. Берем два атома (А и В), перепутываем их[32] и один – А – подаем на передаточный конец вашего телепортационного устройства, а второй – В – на приемный конец.

2. Передатчик берет другой атом, тот, который он хочет телепортировать (С), и интерферирует его с А. В процессе происходит коллапс волновой функции и А, и В на приемном конце. Мы уже видели, что интерференция и наблюдение влияют на волновые функции именно так, и в результате С тоже меняется. Это все равно что сказать, что объект, который вы передали, уничтожен.

3. Приемник на своем конце проделывает то же самое, но интерферирует атом-мишень D со своим измененным и запутанным атомом В. Его интерференция также влияет на D, но производит обратный эффект, и D приобретает оригинальную волновую функцию атома С.

Телепортация – дело необычайно трудное. Лишь в 1997 году удалось телепортировать один-единственный фотон, и лишь в 2004 году несколько групп ученых сумели телепортировать один-единственный атом, да и то всего на расстояние в несколько метров. Учитывая, сколько потребовалось трудов, было бы проще просто перенести атом из одного места в другое.

Чем крупнее система, тем сложнее ее телепортировать. Даже телепортация одной молекулы пока что далеко за пределами наших экспериментальных способностей. Так что хотя телепортация, строго говоря, возможна, пройдет еще очень много времени, прежде чем станет отдаленно возможной телепортация человека, да и тогда мы бы не рекомендовали ее практиковать.

VI. Если в лесу падает дерево и никто этого не слышит, раздается ли шум?

Наши примеры были сосредоточены на микроскопических частицах, однако мы вовсе не утверждали, что для того, чтобы вести себя по-квантовому, частица обязательно должна быть крошечной. Более того, на самом деле мы доказывали, что вся наша Вселенная имеет фундаментально квантовую природу. В самом деле, если микроскопический мир управляется исключительно квантовыми законами, нельзя ли обобщить их и счесть, что и мы подчиняемся этим правилам?

И да и нет.

Возьмем, к примеру, принцип неопределенности[33]. Когда мы говорили о нем, то оставили в стороне все сложные математические выкладки (читайте: всю математику), поэтому сейчас должны добавить еще одну детальку. Чем массивнее частица, тем точнее мы способны вычислить и ее местоположение, и ее скорость.

Например, представьте себе, что мы проделываем опыт с двумя щелями с потоком электронов. Если две щели разнесены на миллиметр, то мы вправе предположить, что неопределенность положения электрона – примерно миллиметр. Иначе никак – ведь мы не знаем, сквозь какую щель прошел электрон. Пожонглировав немного цифрами, мы обнаружим, что скорость электрона неопределенна примерно на 160 метров в час. Не слишком большое число, зато оно поддается измерению.

А если мы измерим скорость Хайда (когда он, например, скрывается с места преступления) с точностью до 160 метров в час? Это гораздо точнее, чем точность любого прибора, который может оказаться у вас под рукой. Предположим, что поскольку мы вычислили скорость Хайда с вполне осязаемой и измеряемой точностью, в его местоположении должна быть неопределенность. Она и есть. Местоположение Хайда неопределенно с точностью примерно одна десятиквинтиллионная доля размера ядра атома. На более мелком масштабе Хайд вел бы себя как волна. Поскольку сам он гораздо крупнее одной десятиквинтиллионной доли размера ядра атома, то во всех мыслимых ситуациях ведет себя как частица. То есть нет никаких представимых обстоятельств, в которых макроскопические предметы (вроде нас с вами, Джекила и Хайда) будут вести себя как квантовые объекты.

Вернемся к вопросу, с которого мы начали эту главу, и поговорим о классическом эксперименте, который глубоко запал в общественное сознание, – об Эрвине Шредингере и его легендарном коте.



Пусть Хайд, этот бессердечный негодяй, сделает ящик с флаконом яда внутри. Если некий радиоактивный атом, также заключенный в этот ящик, распадается за определенный отрезок времени, яд попадет в ящик. Если атом не распадется, яд останется во флаконе. Затем Хайд сажает в ящик кота и закрывает крышку[34].

Назначенное время прошло. Жив кот или мертв?

Этот вопрос Шредингер задал еще в далеком 1935 году – как бы между прочим, в одной длинной сугубо технической статье, – и обсуждение его заняло не больше места, чем в нашей книге. И хотя загадка шредингеровского кота ничего не говорит нам о том, как создать квантовый компьютер или микросхему, она заставляет задать некоторые вопросы о подлинной природе Вселенной. Оказывается, есть несколько способов отравить кота – или по крайней мере интерпретировать факт отравления.

Копенгагенская интерпретация

В 1927 году два основателя квантовой механики – Нильс Бор и Вернер Гейзенберг – сформулировали первую версию так называемой копенгагенской интерпретации квантовой механики. В целом она заключается именно в том, на что мы опирались все это время:

1) система описывается исключительно своей волновой функцией;

2) волновая функция показывает, что определенные измерения сугубо вероятностны;

3) как только мы делаем измерение, происходит коллапс волновой функции, и у нас остается конкретное число.

И хотя мы собираемся описать некоторые другие точки зрения, любой физик, работающий от звонка до звонка, считает копенгагенскую интерпретацию общепринятой версией событий, в основном потому, что она позволяет нам производить вычисления, не слишком задумываясь о том, что все это на самом деле значит[35].

Однако даже среди горячих сторонников квантовой механики существуют определенные разногласия относительно того, что на самом деле гласит копенгагенская интерпретация. Существует ли на самом деле волновая функция? И правда ли это, что реальность системы заключается только в том, что мы наблюдаем? Лично нам кажется, что это пустые придирки. Лично нам гораздо ближе версия Дэвида Мермина: «Если бы меня заставили изложить суть копенгагенской интерпретации одной фразой, я бы ответил: “Заткнись и считай!”»

Ближе к делу: как получается, что то, что мы что-то наблюдаем, приводит к коллапсу наблюдаемого? Вообще-то мы и сами состоим из субатомных частиц, которые также подчиняются законам квантовой механики. Откуда Вселенная знает, как перейти из состояния неопределенности до того, как произошло измерение, к определенности после этого?

У наблюдения есть последствия и похуже коллапса волновой функции. Вспомните наш разговор о том, что ваша волновая функция простирается до далеких звезд и, строго говоря, существует вероятность, что вас туда спонтанно телепортирует? Так вот, когда вас наблюдают здесь, на Земле, у вашей волновой функции происходит коллапс, а значит, ваша волновая функция где бы то ни было еще исчезает. Если вас это не беспокоит, советуем задуматься. Что-то происходящее здесь мгновенно влияет на происходящее в нескольких световых годах отсюда – а значит, это влияние распространяется со скоростью больше скорости света.

Давайте забудем обо всем этом и просто посмотрим, что говорит нам Бор про кота. Жив или мертв шредингеровский кот? Согласно копенгагенской интерпретации, да.

Серьезно.

Копенгагенская интерпретация говорит нам: «И то и другое с определенной вероятностью. Если мы откроем ящик, то произойдет коллапс волновой функции, и останется только одна возможность, которую мы и пронаблюдаем».

Чушь какая! Что за глупости – думать, будто кот может быть одновременно и живым, и мертвым! Именно это и хотел сказать Шредингер[36].

Теперь посмотрим с точки зрения квантовой механики на старинную загадку: если дерево падает в лесу, где его никто не слышит, производит ли оно грохот? «Нет, – отвечает копенгагенская интерпретация. – Для начала, оно даже и не падает, пока не появляется наблюдаемых свидетельств того, что это произошло». Какая нелепость – только представьте себе, что такой крупный предмет, как вековое дерево, настолько подвержен влиянию того, наблюдают его или нет. Это правда. Но в чем же разница между деревом и котом? Или котом и ядром атома?

Бор считал, что на ситуацию влияет не просто наблюдение, а осознанное наблюдение. Если бы вместо шредингеровского кота у нас был бы шредингеровский аспирант, мы бы практически не сомневались, что более или менее вменяемый аспирант наблюдал бы за системой сам. Почему же так важно, чтобы наблюдателем был именно человек?

С философской точки зрения, самая серьезная проблема с копенгагенской интерпретацией выражается одним вопросом: есть ли разница между тем, что знает ученый, и тем, что знает Вселенная?

Здравый смысл подсказывает, что в случае шредингеровского кота разница очень велика. Очевидно, что Вселенная должна «знать», жив кот или мертв, даже если ученый не знает. В некотором смысле копенгагенская интерпретация утверждает, что неважно, знает ли Вселенная о том, жив кот или мертв, до того, как ящик откроют. Это не изменит ничего наблюдаемого.

Здесь чего-то не хватает. С одной стороны, мы уже видели в опыте с двумя щелями, что прямое или косвенное наблюдение электрона способно заставить его перейти из состояния неопределенности к поведению, подобающему частице. Если мы не будем тревожить электрон, глядя на него, он буквально пройдет через обе щели. А «выбирает» только одну он лишь в том случае, если у нас хватает наглости подглядывать за ним.

Если все обстоит именно так, в чем тогда принципиальное отличие шредингеровского кота? Это просто более сложная система, в которую по случаю входит не просто один электрон, но еще и радиоактивный образец, флакон яда и квадрильоны атомов, составляющих кота. Те из нас, кто придерживается механистического взгляда на Вселенную, сочтут, что это приведет к невозможной ситуации, поскольку на самом деле мы должны посмотреть на вещи гораздо шире.

Поскольку все частицы во Вселенной в той или иной степени взаимодействуют, Вселенная в целом, в том числе и ученые, и их оборудование, есть одна гигантская волновая функция. Если воспринять это утверждение буквально, становится, мягко говоря, не по себе. Это значит, что все наблюдения, ощущения и поступки как таковые суть комбинация более чем одной возможности, просто вероятность одной из них гораздо, гораздо больше вероятности остальных.

Лично нам вероятность такой «вселенной суперпозиции» кажется настолько неприятной, что мы предпочтем жить во вселенной, где реальность формируется под воздействием сознания[37].

Причинная интерпретация. Бом-бом-бом…

Если копенгагенская интерпретация вас нервирует (и кто вас в этом упрекнет?), не волнуйтесь. Это не единственное заведение в нашем городке. Существуют и другие интерпретации квантовой механики. Все они используют те же уравнения или по крайней мере получают те же результаты[38]. Однако они, прямо скажем, по-разному объясняют то, что происходит на самом деле. Иначе говоря, мы не в состоянии проверить экспериментально, какая интерпретация верна, и оказываемся во владениях философии.

В 1952 году Дэвид Бом, который тогда работал в Университете Сан-Паулу, выдвинул «причинную интерпретацию» квантовой механики. Бом был категорически не согласен с тем, что шредингеровский кот «полужив – полумертв». Он считал, что на самом деле все то, что мы называли неопределенным – местоположение, скорость, признаки жизни нашего кота, – на самом деле четко определено. Но (и это очень большое НО), хотя частица и Вселенная знают эти определенные значения, это не гарантирует, что их знаете вы.

Бом предположил, что кроме волновой функции должны быть еще «скрытые переменные», и он был не одинок. Одним из первых сторонников и защитников скрытых переменных был сам Эйнштейн, которому следствия квантовой механики категорически не нравились.

Согласно Бому, скрытые переменные включают в себя качества вроде местоположения и скорости, которые, как говорит обычная квантовая механика, совершенно неопределенны. Это все равно что гонять на водных лыжах по зыбучему океану. В каждый конкретный момент лыжи двигаются с определенной скоростью и находятся в определенном месте. Однако если вы попытаетесь точно определить положение лыж, то увидите, что они хаотически болтаются туда-сюда. Подобным же образом волновая функция, согласно причинной интерпретации, «двигает» частицу, подталкивая ее в разные стороны, так что если бы мы проводили опыт с двумя щелями, то траектория электрона делала бы якобы случайные волнообразные колебания.

С одной стороны, причинная интерпретация очень утешает. Она заверяет нас, что абсолютная реальность существует, даже если мы не знаем, какова она сейчас и какова она будет в следующую секунду. Электрон на самом деле находится в каком-то одном определенном месте. Нет никакого мистера Хайда! Есть только доктор Джекил. Переодетый[39].

Более того, причинная интерпретация решает очень важную проблему, с которой не справилась копенгагенская. Согласно Бому, никакого «коллапса волновой функции» не происходит. Волновая функция никуда не девается, потому что, делая измерения, мы всего-навсего обнаруживаем, где частица была все это время. Мы все равно влияем на нее самим актом наблюдения, но так, что это ничуть не противоречит классической интуиции.

Мы уже упоминали, что причинная интерпретация получает те же результаты, что и обычная квантовая механика. Это и плюс, и минус. Подобно копенгагенской интерпретации, причинная интерпретация Бома требует, чтобы сигналы можно было отправлять со скоростью выше скорости света (пусть и крайне редко).

И если при обычных обстоятельствах версия Бома приводит к тем же результатам, что и классическая квантовая механика, нужно сделать по меньшей мере одно предупреждение. Все, о чем мы тут говорили, предполагало, что мы говорим о низких энергиях и частицах, которые уже некоторое время существовали. Есть множество ситуаций, для которых такое определение не подходит, и нам приходится решать вопросы о том, откуда взялись частицы и что происходит, когда мы приближаемся к скорости света. Обычная квантовая механика была расширена и обобщена настолько, что готова дать ответы на подобные вопросы, а версия Бома – нет. Возможно ли это? Покажет только время.

Однако не будем затевать дискуссию о том, что можно и чего нельзя сделать с формулами, поскольку это отвлекает нас от проблемы кошачьей смертности. Что там с котом? Жив он или мертв – по этой интерпретации?

Вообще говоря, Бом утверждает, что лично он не знает, но кот наверняка либо жив, либо мертв, – или то или другое. Мы еще не открыли ящик, а когда откроем, сразу узнаем ответ.

Как это скучно! «Не знаю. Давайте проверим». Скучно, но зато далеко не так мозголомно, как если бы нам сказали «и то и другое».

Интерпретация «множественных миров»

Как неприятно, однако, сознавать, что Вселенная могла пойти и по тому пути, и по другому, но почему-то произвольно выбрала какой-то один. В 1957 году Хью Эверетт, который тогда работал в Пентагоне, предложил интерпретацию «множественных миров».

Эверетт предположил, что каждое случайное событие – например, то, через какую именно щель проскочил электрон, – порождает две разные, однако параллельные вселенные, которые неразличимы во всем, кроме того факта, что в одной электрон прошел в щель А, а в другой – в щель В. С течением времени вселенные снова и снова расщепляются, практически бесконечное количество раз, порождая тем самым огромное количество параллельных вселенных.

Согласно Эверетту, эти многочисленные миры могут затем интерферировать друг с другом. С математической точки зрения это практически ничем не отличается от обычной квантовой механики. Например, если мы представим себе электрон в эксперименте с двумя щелями, то в нашей Вселенной, скажем, электрон проходит в левую щель, а в других вселенных – в правую. Затем волновые функции разных вселенных интерферируют друг с другом, и если повторить опыт с несколькими электронами, то получим тот самый рисунок из множества полос, который мы уже видели.

В этом случае тоже нет никакого Хайда. Так получается просто потому, что поскольку в каждой вселенной есть свой доктор Джекил, который проделывает тот же опыт, эти множественные Джекилы интерферируют друг с другом.

Расщепляются не только частицы. Расщепляетесь и вы. Если вы задумаетесь о том, что вы будете делать через 10 минут, то это «вы» относится к целому множеству различных «вы». Каким же из этих «вы» станете вы в конце концов? Всеми сразу. Просто каждый конкретный «вы» будет помнить ту историю, которая произошла в его вселенной. Это значит, что где-то есть «вы»-телезвезда и «вы»-конструктор звездолетов[40]. Просто не все возможности одинаково вероятны.

За счет возникновения бесконечного множества вселенных Эверетт сумел дать утешительный ответ и на наш вопрос о шредингеровском коте. Как и Бом, он ответил: «Не знаю. Кот или жив, или мертв, и единственный способ это выяснить – открыть ящик. Однако если мы откроем крышку, то получим не более чем информацию. Это никак не изменит реальность».

В целом это тот же ответ, который мы дали с точки зрения причинной интерпретации Вселенной, но есть один важный нюанс. Если окажется, что кот жив, это верно лишь для нашей Вселенной. Существуют и другие вселенные – бесконечное множество других вселенных, – в которых кот мертв.

Как выяснилось, реальность – явление сугубо местное.

Оглавление

Из серии: Золотой фонд науки

* * *

Приведённый ознакомительный фрагмент книги Вселенная! Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности (Дэйв Голдберг, 2010) предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я