Теория случайных матриц

  • Теория случайных матриц — раздел математики на стыке математической физики и теории вероятности, изучающий свойства ансамблей матриц, элементы которых распределены случайным образом. Как правило, задаётся закон распределения элементов. При этом изучается статистика собственных значений случайных матриц, а иногда также статистика их собственных векторов.

    Теория случайных матриц имеет множество применений в физике, в особенности в приложениях квантовой механики к изучению неупорядоченных и классически хаотических динамических систем. Дело в том, что гамильтониан хаотической системы нередко можно представлять себе как случайную эрмитову или симметричную вещественную матрицу, при этом уровни энергии этого гамильтониана будут представлять собой собственные значения случайной матрицы.

    Впервые теория случайных матриц была применена Вигнером в 1950 году для описания уровней энергии атомного ядра. Впоследствии оказалось, что теорией случайных матриц описывается множество систем, включая, например, уровни энергии квантовых точек, уровни энергии частиц в потенциалах сложной формы. Как оказалось, теория случайных матриц применима практически к любой квантовой системе, классический аналог которой не является интегрируемым. При этом наблюдаются существенные отличия в распределении уровней энергии: распределение уровней энергии в интегрируемой системе, как правило, близко к распределению Пуассона, в то время как для неинтегрируемой системы оно имеет другой вид, характерный для случайных матриц (см. ниже).

    Теория случайных матриц оказалась полезной и для, казалось бы, посторонних разделов математики, в частности, распределение нулей дзета-функции Римана на критической прямой можно описать с помощью некоторого ансамбля случайных матриц.

Источник: Википедия

Связанные понятия

Ква́нтовая тео́рия по́ля (КТП) — раздел физики, изучающий поведение квантовых систем с бесконечно большим числом степеней свободы — квантовых (или квантованных) полей; является теоретической основой описания микрочастиц, их взаимодействий и превращений. Именно на квантовой теории поля базируется вся физика высоких энергий, физика элементарных частиц и физика конденсированного состояния. Квантовая теория поля в виде Стандартной модели (с добавкой масс нейтрино) сейчас является единственной экспериментально...
В квантовой механике, преобразование Вигнера — Вейля (названо в честь Германа Вейля и Юджина Вигнера) — обратимое отображение функций в представлении фазового пространства на операторы гильбертова пространства в представлении Шредингера.
Метод ренормализационной группы (также часто называемый методом ренормгруппы, методом РГ) в квантовой теории поля — итеративный метод перенормировки, в котором переход от областей с меньшей энергией к областям с большей вызван изменением масштаба рассмотрения системы.

Подробнее: Ренормализационная группа
Формулировка через интеграл по траекториям квантовой механики — это описание квантовой теории, которое обобщает принцип действия классической механики. Оно замещает классическое определение одиночной, уникальной траектории системы полной суммой (функциональным интегралом) по бесконечному множеству всевозможных траекторий для расчёта квантовой амплитуды. Методологически формулировка через интеграл по траекториям близка к принципу Гюйгенса — Френеля из классической теории волн.
Метод главных компонент (англ. principal component analysis, PCA) — один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации. Изобретён Карлом Пирсоном в 1901 году. Применяется во многих областях, в том числе, в эконометрике, биоинформатике, обработке изображений, для сжатия данных, в общественных науках.
Теория потенциала — раздел математики и математической физики, посвящённый изучению свойств дифференциальных уравнений в частных производных в областях с достаточно гладкой границей посредством введения специальных видов интегралов, зависящих от определённых параметров, называемых потенциалами.
Диакоптика, или метод Крона (англ. diakoptics, греческий dia-через, усиливает слово, стоящее за ним и может интерпретировано как «система» + kopto-разрыв) — один из методов расчленения при исследовании сложных систем, которые могут быть представлены в виде блок-схемы или графа с использованием граф-топологического портрета системы как нового источника информацииТермин диакоптика использовал Крон в серии статей «Diakoptics — The Piecewise Solution of Large-Scale Systems», опубликованных между 7 июня...
Гамильто́нова меха́ника является одной из формулировок классической механики. Предложена в 1833 году Уильямом Гамильтоном. Она возникла из лагранжевой механики, другой формулировки классической механики, введённой Лагранжем в 1788 году. Гамильтонова механика может быть сформулирована без привлечения лагранжевой механики с использованием симплектических многообразий и пуассоновых многообразий.
В математике термин матрица Картана имеет три значения. Все они названы по имени французского математика Эли Картана. Фактически, матрицы Картана в контексте алгебр Ли впервые исследовал Вильгельм Киллинг, в то время как форма Киллинга принадлежит Картану.
Микроканонический ансамбль — статистический ансамбль макроскопической изолированной системы с постоянными значениями объёма V, числа частиц N и энергии E. Понятие микроканонического ансамбля является идеализацией, так как в действительности полностью изолированных систем не существует. В микроканоническом распределении Гиббса все микроскопические состояния, отвечающие данной энергии, равновероятны согласно эргодической гипотезе. Теорема Гиббса, доказанная автором, утверждает, что малую часть микроканонического...
Ма́тричная меха́ника — математический формализм квантовой механики, разработанный Вернером Гейзенбергом, Максом Борном и Паскуалем Иорданом в 1925 году.
Ве́ктор (от лат. vector, «несущий») — в простейшем случае математический объект, характеризующийся величиной и направлением. Например, в геометрии и в естественных науках вектор есть направленный отрезок прямой в евклидовом пространстве (или на плоскости).
Лине́йная а́лгебра — раздел алгебры, изучающий объекты линейной природы: векторные (или линейные) пространства, линейные отображения, системы линейных уравнений, среди основных инструментов, используемых в линейной алгебре — определители, матрицы, сопряжение. Теория инвариантов и тензорное исчисление обычно (в целом или частично) также считаются составными частями линейной алгебры. Такие объекты как квадратичные и билинейные формы, тензоры и операции как тензорное произведение непосредственно вытекают...
Векторное поле — это отображение, которое каждой точке рассматриваемого пространства ставит в соответствие вектор с началом в этой точке.
Блочный Гамильтониан — гамильтониан, описывающий критическое поведение магнетика вблизи точки фазового перехода второго рода.
Ковариа́нтный метод — подход в теоретической физике, разработанный Ф. И. Фёдоровым на основе линейной алгебры и прямого тензорного исчисления. Получил распространение в приложении к описанию оптических явлений и, частично, в физике элементарных частиц.
Математические основы квантовой механики — принятый в квантовой механике способ математического моделирования квантовомеханических явлений, позволяющий вычислять численные значения наблюдаемых в квантовой механике величин. Были созданы Луи де-Бройлем (открытие волн материи), В. Гейзенбергом (создание матричной механики, открытие принципа неопределённости), Э. Шрёдингером (уравнение Шрёдингера), Н. Бором (формулировка принципа дополнительности). Завершил создание математических основ квантовой механики...
Математи́ческий ана́лиз (классический математический анализ) — совокупность разделов математики, соответствующих историческому разделу под наименованием «анализ бесконечно малых», объединяет дифференциальное и интегральное исчисления.
Уравнение синус-Гордона — это нелинейное гиперболическое уравнение в частных производных в 1 + 1 измерениях, включающее в себя оператор Даламбера и синус неизвестной функции. Изначально оно было рассмотрено в XIX веке в связи с изучением поверхностей постоянной отрицательной кривизны. Это уравнение привлекло много внимания в 1970-х из-за наличия у него солитонных решений.
Зеркальная симметрия была изначально обнаружена физиками. Математики заинтересовались этим явлением около 1990 года, когда Филип Канделас, Ксения де ла Осса, Пол Грин и Линда Паркс показали, что зеркальную симметрию можно использовать в качестве инструмента в исчислительной геометрии, разделе математики, занимающемся подсчётом количества ответов на те или иные геометрические вопросы. Канделас и соавторы показали, что зеркальная симметрия может быть использована для подсчёта числа рациональных кривых...
В прикладной статистике метод наименьших полных квадратов (МНПК, TLS — англ. Total Least Squares) — это вид регрессии с ошибками в переменных, техника моделирования данных с помощью метода наименьших квадратов, в которой принимаются во внимание ошибки как в зависимых, так и в независимых переменных. Метод является обобщением регрессии Деминга и ортогональной регрессии и может быть применён как к линейным, так и нелинейным моделям.
Симметрия встречается не только в геометрии, но и в других областях математики. Симметрия является видом инвариантности, свойством неизменности при некоторых преобразованиях.
Уравнение ренормгруппы (уравнение Каллана — Симанчика) — дифференциальное уравнение для корреляционных функций (пропагаторов), показывающее их независимость от масштаба рассмотрения. Оно имеет место, например, при рассмотрении динамики системы вблизи критической точки.
О́бщая тео́рия относи́тельности в многоме́рном простра́нстве — это обобщение общей теории относительности на пространство-время с размерностью больше или меньше 4. Эта теория даёт основу для так называемой геометризации взаимодействий — одного из двух путей (наряду с калибровочным подходом) к построению единой теории поля. Она состоит из различных физических теорий, которые пытаются обобщить теорию относительности Эйнштейна на более высоких размерностях. Такая попытка обобщения находится под большим...
Функция Вигнера (функция квазивероятностного распределения Вигнера, распределение Вигнера, распределение Вейля) была введена Вигнером в 1932 году для изучения квантовых поправок к классической статистической механике. Целью было заменить волновую функцию, которая появляется в уравнении Шрёдингера на функцию распределения вероятности в фазовом пространстве. Она была независимо выведена Вейлем в 1931 году как символ матрицы плотности теории представлений в математике. Функция Вигнера применяется в...
Квантовая статистическая механика – статистическая механика, применяемая к квантовомеханическим системам. Для перехода от классической статистической механики к квантовой предположение классической статистической механики о том, что все допустимые области фазового пространства можно считать равновероятными, заменяется предположением, что все допустимые состояния имеют равные вероятности. Математически это означает, что все интегралы по фазовому пространству заменяются суммами по всем собственным...
В статистике, машинном обучении и теории информации снижение размерности — это преобразование данных, состоящее в уменьшении числа переменных путём получения главных переменных. Преобразование может быть разделено на отбор признаков и выделение признаков.

Подробнее: Снижение размерности
Критическая динамика — раздел теории критического поведения и статистической физики, описывающий динамические свойства физической системы в или вблизи критической точки. Является продолжением и обобщением критической статики, позволяя описывать величины и характеристики системы, которые нельзя выразить лишь через одновременны́е равновесные функции распределения. Такими величинами являются, например, коэффициенты переноса, скорости релаксации, разновременны́е корреляционные функции, функции отклика...
В квантовой механике, частица в одномерном периодическом потенциале — это идеализированная задача, которая может быть решена точно (при некоторых специального вида потенциалах), без упрощений. Предполагается, что потенциал бесконечен и периодичен, то есть обладает трансляционной симметрией, что, вообще говоря, не выполняется для реальных кристаллов, и всегда существует как минимум один дефект — поверхность (это приводит к другой задаче о поверхностных состояниях или таммовских уровнях).
Теория среднего поля или теория самосогласованного поля — подход к изучению поведения больших и сложных стохастических систем в физике и теории вероятностей через исследование простых моделей. Такие модели рассматривают многочисленные малые компоненты, которые взаимодействуют между собой. Влияние других индивидуальных компонент на заданный объект аппроксимируется усредненным эффектом, благодаря чему задача многих тел сводится к одночастичной задаче.
В этой статье рассматривается математический базис общей теории относительности.

Подробнее: Математическая формулировка общей теории относительности
Атом Гука относится к искусственным атомам подобных атому гелия, в котором кулоновский электрон-ядерный потенциал взаимодействия...
Квантовое состояние — любое возможное состояние, в котором может находиться квантовая система. Чистое квантовое состояние может быть описано...
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах (акустика, преимущественно линейная: звук в газах, жидкостях и твёрдых телах) и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики...
В физике топологическое квантовое число (также называемое топологическим зарядом) — это любая величина в физической теории, которая принимает лишь дискретное множество значений, вследствие топологических соображений. Обычно топологические квантовые числа являются топологическими инвариантами, связанными с решениями типа топологических солитонов некоторой системы дифференциальных уравнений, моделирующих физическую систему, так как солитоны сами по себе своей стабильностью обязаны топологическим соображениям...
Дифференциальное уравнение в частных производных (частные случаи также известны как уравнения математической физики, УМФ) — дифференциальное уравнение, содержащее неизвестные функции нескольких переменных и их частные производные.
Соотноше́ния Кра́мерса — Кро́нига — интегральная связь между действительной и мнимой частями любой комплексной функции, аналитичной в верхней полуплоскости. Часто используются в физике для описания связи действительной и мнимой частей функции отклика физической системы, поскольку аналитичность функции отклика подразумевает, что система удовлетворяет принципу причинности, и наоборот . В частности, соотношения Крамерса — Кронига выражают связь между действительной и мнимой частями диэлектрической проницаемости...
О дискретном эквиваленте преобразования Лапласа см. Z-преобразование.В математике дискретный оператор Лапласа — аналог непрерывного оператора Лапласа, определяемого как отношения на графе или дискретной сетке. В случае конечномерного графа (имеющего конечное число вершин и рёбер) дискретный оператор Лапласа имеет более общее название: матрица Лапласа.

Подробнее: Дискретный оператор Лапласа
Классификация Петрова (иногда классификация Петрова — Пирани, редко классификация Петрова — Пирани — Пенроуза) описывает возможные алгебраические симметрии тензора Вейля для каждого события на псевдоримановом многообразии.
Теория волны-пилота использует тот же математический формализм, что и другие интерпретации квантовой механики, и, следовательно, она подтверждается текущими экспериментальными доказательствами в той же степени, как и другие интерпретации.
Фракта́л (лат. fractus — дроблёный, сломанный, разбитый) — множество, обладающее свойством самоподобия (объект, в точности или приближённо совпадающий с частью себя самого, то есть целое имеет ту же форму, что и одна или более частей). В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической, поэтому их следует отличать от прочих геометрических...
Лагранжева механика является переформулировкой классической механики, введённой Лагранжем в 1788 году. В лагранжевой механике траектория объекта получается при помощи отыскания пути, который минимизирует действие — интеграл от функции Лагранжа по времени. Функция Лагранжа для классической механики вводится в виде разности между кинетической энергией и потенциальной энергией.
Фазовое пространство в математике и физике — пространство, каждая точка которого соответствует одному и только одному состоянию из множества всех возможных состояний системы. Точка пространства, соответствующая состоянию системы называется «изображающей» или «представляющей» для него. Таким образом, изменению состояний системы, — т.е. её динамике — можно сопоставить движение изображающей точки; траекторию этой точки называют фазовой траекторией (следует отметить, что она не тождествлена действительной...
Коэффициенты Клебша — Гордана находят применение при описании взаимодействия квантовомеханических моментов импульса. Они представляют собой коэффициенты разложения собственных функций суммарного момента импульса по базису собственных функций суммируемых моментов импульса. Коэффициенты Клебша — Гордана применяются при вычислении спин-орбитального взаимодействия, а также в формализме изоспина.
Обобщённая фу́нкция или распределе́ние — математическое понятие, обобщающее классическое понятие функции.
Метод наименьших квадратов (МНК) — математический метод, применяемый для решения различных задач, основанный на минимизации суммы квадратов отклонений некоторых функций от искомых переменных. Он может использоваться для «решения» переопределенных систем уравнений (когда количество уравнений превышает количество неизвестных), для поиска решения в случае обычных (не переопределенных) нелинейных систем уравнений, для аппроксимации точечных значений некоторой функции. МНК является одним из базовых методов...
Многомерный анализ (также известный как многомерное или многовариантное исчисление) является обобщением дифференциального и интегрального исчислений для случая нескольких переменных.
Произведением Мояля — самый известный пример звёздочного произведения в фазовом пространстве.
Одноэлектронное приближение — приближенный метод нахождения волновых функций и энергетических состояний квантовой системы со многими электронами.
Сфера Блоха — способ представления чистых состояний кубита в виде точек на сфере.
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я