Разложение Данцига — Вулфа

  • Метод декомпозиции Данцига — Вулфа представляет собой специализированный вариант симплекс-метода.

    В 1960 г. Джордж Данциг и Филип Вулф разработали метод декомпозиции для решения задач высокой размерности со специальной структурой матрицы ограничений.

    Этот метод оказался наиболее эффективным для решения задач, матрица ограничений которых имеет блочно-диагональный вид с небольшим числом переменных. Однако, как показали дальнейшие исследования, метод применим также и для задач линейного программирования с матрицей общего вида. Соответствующий метод предложен Д. Б. Юдиным и Э. Г. Гольштейном и называется блочным программированием.

    Отличительной особенностью метода декомпозиции является использование координирующей задачи, которая имеет, по сравнению с исходной, небольшое число строк и большое число столбцов.

Источник: Википедия

Связанные понятия

Полуопределённое программирование (en: Semidefinite programming, SDP) — это подраздел выпуклого программирования, которое занимается оптимизацией линейной целевой функции (целевая функция — это заданная пользователем функция, значение которой пользователь хочет минимизировать или максимизировать) на пересечении конусов положительно полуопределённых матриц с аффинным пространством.
Целочисленное программирование является NP-трудной задачей. Специальный случай, 0-1 целочисленное линейное программирование, в которой переменные принимают значения 0 или 1, является одной из 21 NP-полных задач Карпа.
Не путать с «симплекс-методом» — методом оптимизации произвольной функции. См. Метод Нелдера — МидаСимплекс-метод — алгоритм решения оптимизационной задачи линейного программирования путём перебора вершин выпуклого многогранника в многомерном пространстве.

Подробнее: Симплекс-метод
Генерация столбцов или отложенная генерация столбцов — это эффективный подход к решению больших задач линейного программирования.
Алгоритм Гельфонда — Шенкса (англ. Baby-step giant-step; также называемый алгоритмом больших и малых шагов) — в теории групп детерминированный алгоритм дискретного логарифмирования в мульпликативной группе кольца вычетов по модулю простого числа. Был предложен советским математиком Александром Гельфондом в 1962 году и Дэниэлем Шенксом в 1972 году.
Метод Стронгина — метод решения одномерных задач условной липшицевой оптимизации. Позволяет находить глобально оптимальное решение в задачах с ограничениями неравенствами при условии, что целевая функция задачи и левые части неравенств удовлетворяют условию Липшица в области поиска.
Предобуславливание (также предобусловливание) — процесс преобразования условий задачи для её более корректного численного решения. Предобуславливание обычно связано с уменьшением числа обусловленности задачи. Предобуславливаемая задача обычно затем решается итерационным методом.
Задача разбиения множества чисел — это задача определения, можно ли данное мультимножество S положительных целых чисел разбить на два подмножества S1 и S2, таких, что сумма чисел из S1 равна сумме чисел из S2. Хотя задача разбиения чисел является NP-полной, существует решение псевдополиномиального времени методом динамического программирования существуют эвристические алгоритмы решения для многих конкрентных задач либо оптимально, либо приближённо. По этой причине задачу называют "простейшей NP-трудной...
Универса́льное хеши́рование (англ. Universal hashing) — это вид хеширования, при котором используется не одна конкретная хеш-функция, а происходит выбор из заданного семейства по случайному алгоритму. Такой подход обеспечивает равномерное хеширование: для очередного ключа вероятности помещения его в любую ячейку совпадают. Известно несколько семейств универсальных хеш-функций, которые имеют многочисленные применения в информатике, в частности в хеш-таблицах, вероятностных алгоритмах и криптографии...
Задача о сумме подмножеств — это важная задача в теории сложности алгоритмов и криптографии.
Алгоритм исчисления порядка (index-calculus algorithm) — вероятностный алгоритм вычисления дискретного логарифма в кольце вычетов по модулю простого числа. На сложности нахождения дискретного логарифма основано множество алгоритмов связанных с криптографией. Так как для решения данной задачи с использованием больших чисел требуется большое количество ресурсов, предоставить которые не может ни один современный компьютер. Примером такого алгоритма является ГОСТ Р 34.10-2012.
Длинная арифметика — выполняемые с помощью вычислительной машины арифметические операции (сложение, вычитание, умножение, деление, возведение в степень, элементарные функции) над числами, разрядность которых превышает длину машинного слова данной вычислительной машины. Эти операции реализуются не аппаратно, а программно, с использованием базовых аппаратных средств работы с числами меньших порядков. Частный случай — арифметика произвольной точности — относится к арифметике, в которой длина чисел ограничена...
Ме́тоды Ру́нге — Ку́тты (в литературе встречаются названия: ме́тоды Ру́нге — Ку́тта или же ме́тоды Ру́нге — Кутта́) — большой класс численных методов решения задачи Коши для обыкновенных дифференциальных уравнений и их систем. Первые методы данного класса были предложены около 1900 года немецкими математиками К. Рунге и М. В. Куттой.
Обобщённая задача коммивояжёра — задача комбинаторной оптимизации, являющаяся обобщением хорошо известной задачи коммивояжёра. Исходными данными для задачи является множество вершин, разбиение этого множества на так называемые кластеры, а также матрица стоимостей перехода из одной вершины в другую. Задача заключается в нахождении кратчайшего замкнутого пути, который бы посетил по одной вершине в каждом кластере (существует также модификация, когда путь должен посетить хотя бы по одной вершине в каждом...
Вероятностно приблизительно корректное обучение (ВПК обучение, англ. Probably Approximately Correct learning, (PAC learning) в теории вычислительного обучения — это схема математического анализа машинного обучения. Схему предложил в 1984 Лесли Вэлиант.
В комбинаторной оптимизации под линейной задачей о назначениях на узкие места (linear bottleneck assignment problem, LBAP) понимается задача, похожая на задачу о назначениях.

Подробнее: Линейная задача о назначениях в узких местах
Ядерные методы в машинном обучении — это класс алгоритмов распознавания образов, наиболее известным представителем которого является метод опорных векторов (МОВ, англ. SVM). Общая задача распознавания образов — найти и изучить общие типы связей (например, кластеров, ранжирования, главных компонент, корреляций, классификаций) в наборах данных. Для многих алгоритмов, решающих эти задачи, данные, представленные в сыром виде, явным образом преобразуются в представление в виде вектора признаков посредством...

Подробнее: Ядерный метод
Вариацио́нное исчисле́ние — раздел анализа, в котором изучаются вариации функционалов. Наиболее типичная задача — найти функцию, на которой заданный функционал достигает экстремального значения.
Неотрицательное матричное разложение (НМР), а также неотрицательное приближение матрицы, это группа алгоритмов в мультивариантном анализе и линейной алгебре, в которых матрица V разлагается на (обычно) две матрицы W и H, со свойством, что все три матрицы имеют неотрицательные элементы. Эта неотрицательность делает получившиеся матрицы более простыми для исследования. В приложениях, таких как обработка спектрограмм аудиосигнала или данных мускульной активности, неотрицательность свойственна рассматриваемым...
Многокритериальная оптимизация, или программирование (англ. Multi-objective optimization) — это процесс одновременной оптимизации двух или более конфликтующих целевых функций в заданной области определения.
Метод внутренней точки — это метод позволяющий решать задачи выпуклой оптимизации с условиями, заданными в виде неравенств, сводя исходную задачу к задаче выпуклой оптимизации.
Обучение с ошибками в кольце (англ. Ring learning with errors, RLWE)— это вычислительная задача, которая была сформулирована как вариант более общей задачи обучения с ошибками (с англ. LWE), с целью использовать преимущество дополнительной алгебраической структуры (т.е. кольца многочленов) из теории решеток, что дало возможность повысить и расширить возможности шифрования тех криптографических приложений, которые ранее основывались на LWE. Задача RLWE стала основой новых криптографических алгоритмов...
Односторонняя функция — математическая функция, которая легко вычисляется для любого входного значения, но трудно найти аргумент по заданному значению функции. Здесь «легко» и «трудно» должны пониматься с точки зрения теории сложности вычислений. Разрыв между сложностью прямого и обратного преобразований определяет криптографическую эффективность односторонней функции. Неинъективность функции не является достаточным условием для того, чтобы называть её односторонней. Односторонние функции могут называться...
Криптосистема Джентри (от фамилии создателя Крейга Джентри) — первая возможная конструкция для полностью гомоморфной криптосистемы, основанная на криптографии на решетках. Впервые была предложена Крейгом Джентри в 2009 году и являлась темой его докторской диссертации. Схема Джентри поддерживает операции сложения и умножения над шифротекстом, что позволяет построить кольца для реализации любых произвольных вычислений. Впоследствии имела множество доработок и модификаций с целью улучшения её производительности...
Квадрати́чная зада́ча о назначе́ниях (КЗН, англ. Quadratic assignment problem, QAP) — одна из фундаментальных задач комбинаторной оптимизации в области оптимизации или исследования операций, принадлежащая категории задач размещения объектов.
Метод конечных элементов (МКЭ) — это численный метод решения дифференциальных уравнений с частными производными, а также интегральных уравнений, возникающих при решении задач прикладной физики. Метод широко используется для решения задач механики деформируемого твёрдого тела, теплообмена, гидродинамики и электродинамики.
Вычисли́тельная сло́жность — понятие в информатике и теории алгоритмов, обозначающее функцию зависимости объёма работы, которая выполняется некоторым алгоритмом, от размера входных данных. Раздел, изучающий вычислительную сложность, называется теорией сложности вычислений. Объём работы обычно измеряется абстрактными понятиями времени и пространства, называемыми вычислительными ресурсами. Время определяется количеством элементарных шагов, необходимых для решения задачи, тогда как пространство определяется...
Квадратичное программирование (англ. quadratic programming, QP) — это процесс решения задачи оптимизации специального типа, а именно — задачи оптимизации (минимизации или максимизации) квадратичной функции нескольких переменных при линейных ограничениях на эти переменные. Квадратичное программирование является частным случаем нелинейного программирования.
Алгоритм Бройдена — Флетчера — Гольдфарба — Шанно (BFGS) (англ. Broyden — Fletcher — Goldfarb — Shanno algorithm) — итерационный метод численной оптимизации, предназначенный для нахождения локального максимума/минимума нелинейного функционала без ограничений.
Динамическое программирование в теории управления и теории вычислительных систем — способ решения сложных задач путём разбиения их на более простые подзадачи. Он применим к задачам с оптимальной подструктурой, выглядящим как набор перекрывающихся подзадач, сложность которых чуть меньше исходной. В этом случае время вычислений, по сравнению с «наивными» методами, можно значительно сократить.
В информатике временна́я сложность алгоритма определяет время работы, используемое алгоритмом, как функции от длины строки, представляющей входные данные . Временная сложность алгоритма обычно выражается с использованием нотации «O» большое, которая исключает коэффициенты и члены меньшего порядка. Если сложность выражена таким способом, говорят об асимптотическом описании временной сложности, т.е. при стремлении размера входа к бесконечности. Например, если время, которое нужно алгоритму для выполнения...

Подробнее: Временная сложность алгоритма
Поточный алгоритм (англ. streaming algorithm) — алгоритм для обработки последовательности данных в один или малое число проходов.
Алгоритмы быстрого возведения в степень по модулю — разновидность алгоритмов возведения в степень по модулю, широко использующихся в различных криптосистемах, для ускорения вычислительных операций с большими числами.
Параметрическая редукция — это техника для разработки эффективных алгоритмов, которые достигают своей эффективности путём препроцессорного шага, в котором вход алгоритма заменяется на меньший вход, называемый «ядром». Результат решения задачи на ядре должен быть либо тем же самым, что и при исходных данных, либо выход решения для ядра должен легко преобразовываться в желаемый выход исходной задачи.
Система Штейнера (названа именем Якоба Штейнера) — вариант блок-схем, точнее, t-схемы с λ = 1 и t ≥ 2.
Схема шифрования GGH (англ. Goldreich–Goldwasser–Halevi) — асимметричная криптографическая система, основанная на решётках. Также существует схема подписи GGH.
Винеровская теория нелинейных систем — подход к решению задач анализа и синтеза нелинейных систем с постоянными параметрами, при котором в качестве математической модели нелинейной системы рассматривается функционал, который ставит в соответствие каждой функции (входному сигналу системы за рассматриваемое время) число (мгновенный выходной сигнал системы).
Циклический избыточный код (англ. Cyclic redundancy check, CRC) — алгоритм нахождения контрольной суммы, предназначенный для проверки целостности данных. CRC является практическим приложением помехоустойчивого кодирования, основанным на определённых математических свойствах циклического кода.
В исследовании операций под аппроксимационным алгоритмом понимается алгоритм, использующийся для поиска приближённого решения оптимизационной задачи.

Подробнее: Аппроксимационный алгоритм
Линейный классификатор — способ решения задач классификации, когда решение принимается на основании линейного оператора над входными данными. Класс задач, которые можно решать с помощью линейных классификаторов, обладают, соответственно, свойством линейной сепарабельности.
Обучение с ошибками (англ. Learning with errors) — это концепция машинного обучения, суть которой заключается в том, что в простые вычислительные задачи (например, системы линейных уравнений) намеренно вносится ошибка, делая их решение известными методами неосуществимым за приемлемое время.
Метод Пиявского - метод нахождения глобального минимума (максимума) липшицевой функции, заданной на компакте. Прост в реализации и имеет достаточно простые условия сходимости. Подходит для широкого класса функций, производную которых, например, мы можем ограничить.
В математическом анализе и информатике кривая Мортона, Z-последовательность,Z-порядок, кривая Лебега, порядок Мортона или код Мортона — это функция, которая отображает многомерные данные в одномерные, сохраняя локальность точек данных. Функция была введена в 1966 Гаем Макдональдом Мортоном. Z-значение точки в многомерном пространстве легко вычисляется чередованием двоичных цифр его координатных значений. Когда данные запоминаются в этом порядке, могут быть использованы любые одномерные структуры...

Подробнее: Кривая Мортона
В математике методы проверки на простоту с помощью эллиптических кривых (англ. - Elliptic Curve Primality Proving, сокр. ЕСРР) являются одними из самых быстрых и наиболее широко используемых методов проверки на простоту . Эту идею выдвинули Шафи Гольдвассер и Джо Килиан в 1986 году; она была превращена в алгоритм А.О.Л. Аткином в том же году. Впоследствии алгоритм был несколько раз изменён и улучшен, в особенности Аткином и François Morain в 1993. Концепция использования факторизации с помощью эллиптических...

Подробнее: Тест простоты с использованием эллиптических кривых
Хеширование (англ. hashing – «превращать в фарш», «мешанина») — преобразование массива входных данных произвольной длины в (выходную) битовую строку установленной длины, выполняемое определённым алгоритмом. Функция, воплощающая алгоритм и выполняющая преобразование, называется «хеш-функцией» или «функцией свёртки». Исходные данные называются входным массивом, «ключом» или «сообщением». Результат преобразования (выходные данные) называется «хешем», «хеш-кодом», «хеш-суммой», «сводкой сообщения».
Ля́мбда-исчисле́ние (λ-исчисление) — формальная система, разработанная американским математиком Алонзо Чёрчем, для формализации и анализа понятия вычислимости.
Вычислительные (численные) методы — методы решения математических задач в численном видеПредставление как исходных данных в задаче, так и её решения — в виде числа или набора чисел.
Обучение признакам или обучение представлениям — это набор техник, которые позволяют системе автоматически обнаружить представления, необходимые для выявления признаков или классификации исходных (сырых) данных. Это заменяет ручное конструирование признаков и позволяет машине как изучать признаки, так и использовать их для решения специфичных задач.
Коды Боуза — Чоудхури — Хоквингема (БЧХ-коды) — в теории кодирования это широкий класс циклических кодов, применяемых для защиты информации от ошибок (см. Обнаружение и исправление ошибок). Отличается возможностью построения кода с заранее определёнными корректирующими свойствами, а именно, минимальным кодовым расстоянием. Частным случаем БЧХ-кодов является код Рида — Соломона.
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я